Hydraulic Model (hydraulic + model)

Distribution by Scientific Domains


Selected Abstracts


Evolution of channel morphology and hydrologic response in an urbanizing drainage basin

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 9 2006
Peter A. Nelson
Abstract The Dead Run catchment in Baltimore County, Maryland, has undergone intense urbanization since the late 1950s. Reconstruction of the channel planform from topographic maps dating back to the 1890s and aerial photographs dating back to the 1930s indicates that the channel has remained stable in planform since at least the 1930s. The relative stability of Dead Run contrasts with the alterations in channel morphology reported for other urbanizing streams in the Piedmont physiographic province of the eastern United States. Trend analyses of discharge records in Dead Run show that urban development and stormwater control measures have had significant impacts on the hydrologic response of the catchment. The flood hydraulics of the Dead Run catchment are examined for the event that occurred on 22 June 1972 in association with Hurricane Agnes. A two-dimensional hydraulic model, TELEMAC-2D, was used with a finite-element mesh constructed from a combination of high-resolution LiDAR topographic data and detailed field survey data to analyse the distribution of boundary shear stress and unit stream power along the channel and floodplain during flooding from Hurricane Agnes. The spatial and temporal distributions of these parameters, relative to channel gradient and channel/valley bottom geometry, provide valuable insights on the stability of the Dean Run channel. The stability of Dead Run's channel planform, in spite of extreme flooding and decades of urban development, is most likely linked to geological controls of channel and floodplain morphology. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Distorted Froude-scaled flume analysis of large woody debris

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 12 2001
Nicholas P. Wallerstein
Abstract This paper presents the results of a movable-boundary, distorted, Froude-scaled hydraulic model based on Abiaca Creek, a sand-bedded channel in northern Mississippi. The model was used to examine the geomorphic and hydraulic impact of simplified large woody debris (LWD) elements. The theory of physical scale models is discussed and the method used to construct the LWD test channel is developed. The channel model had bed and banks moulded from 0·8 mm sand, and flow conditions were just below the threshold of motion so that any sediment transport and channel adjustment were the result of the debris element. Dimensions and positions of LWD elements were determined using a debris jam classification model. Elements were attached to a dynamometer to measure element drag forces, and channel adjustment was determined through detailed topographic surveys. The fluid drag force on the elements decreased asymptotically over time as the channel boundary eroded around the elements due to locally increased boundary shear stress. Total time for geomorphic adjustment computed for the prototype channel at the Q2 discharge (discharge occurring once every two years on average) was as short as 45 hours. The size, depth and position of scour holes, bank erosion and bars created by flow acceleration past the elements were found to be related to element length and position within the channel cross-section. Morphologies created by each debris element in the model channel were comparable with similar jams observed in the prototype channel. Published in 2001 John Wiley & Sons, Ltd. [source]


Transpiration and stomatal conductance across a steep climate gradient in the southern Rocky Mountains

ECOHYDROLOGY, Issue 3 2008
Nate G. McDowell
Abstract Transpiration (E) is regulated over short time periods by stomatal conductance (Gs) and over multi-year periods by tree- and stand-structural factors such as leaf area, height and density, with upper limits ultimately set by climate. We tested the hypothesis that tree structure, stand structure and Gs together regulate E per ground area (Eg) within climatic limits using three sites located across a steep climatic gradient: a low-elevation Juniperus woodland, a mid-elevation Pinus forest and a high-elevation Picea forest. We measured leaf area : sapwood area ratio (Al : As), height and ecosystem sapwood area : ground area ratio (As : Ag) to assess long-term structural adjustments, tree-ring carbon isotope ratios (,13C) to assess seasonal gas exchange, and whole-tree E and Gs to assess short-term regulation. We used a hydraulic model based on Darcy's law to interpret the interactive regulation of Gs and Eg. Common allometric dependencies were found only in the relationship of sapwood area to diameter for pine and spruce; there were strong site differences for allometric relationships of sapwood area to basal area, Al : As and As : Ag. On a sapwood area basis, E decreased with increasing elevation, but this pattern was reversed when E was scaled to the crown using Al : As. Eg was controlled largely by As : Ag, and both Eg and Gs declined from high- to low-elevation sites. Observation-model comparisons of Eg, Gs and ,13C were strongest using the hydraulic model parameterized with precipitation, vapour pressure deficit, Al : As, height, and As : Ag, supporting the concept that climate, Gs, tree- and stand-structure interact to regulate Eg. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Characterization of a Multilayer Aquifer Using Open Well Dilution Tests

GROUND WATER, Issue 1 2007
L. Jared West
An approach to characterization of multilayer aquifer systems using open well borehole dilution is described. The approach involves measuring observation well flow velocities while a nearby extraction well is pumped by introducing a saline tracer into observation wells and collecting dilution vs. depth profiles. Inspection of tracer profile evolution allows discrete permeable layers within the aquifer to be identified. Dilution profiles for well sections between permeable layers are then converted into vertical borehole flow velocities and their evolution, using an analytic solution to the advection-dispersion equation applied to borehole flow. The dilution approach is potentially able to measure much smaller flow velocities that would be detectable using flowmeters. Vertical flow velocity data from the observation wells are then matched to those generated using a hydraulic model of the aquifer system, "shorted" by the observation wells, to yield the hydraulic properties of the constituent layers. Observation well flow monitoring of pumping tests represents a cost-effective alternative or preliminary approach to pump testing each layer of a multilayer aquifer system separately using straddle packers or screened wells and requires no prior knowledge of permeable layer depths and thicknesses. The modification described here, of using tracer dilution rather than flowmeter logging to obtain well flow velocities, allows the approach to be extended to greater well separations, thus characterizing a larger volume of the aquifer. An example of the application of this approach to a multilayer Chalk Aquifer in Yorkshire, Northeast England, is presented. [source]


Near real time satellite imagery to support and verify timely flood modelling

HYDROLOGICAL PROCESSES, Issue 5 2009
Giuliano Di Baldassarre
Abstract The study investigates the capability of coarse resolution synthetic aperture radar (SAR) imagery to support flood inundation models. A hydraulic model of a 98-km reach of the River Po (Northern Italy) was calibrated on the October 2000 high-magnitude flood event with extensive and high-quality field data. During the June 2008, low-magnitude flood event a SAR image was acquired and processed in near real time (NRT) in order to provide adequate data for quick verification and recalibration of the hydraulic model. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Assessment of flooding in urbanized ungauged basins: a case study in the Upper Tiber area, Italy

HYDROLOGICAL PROCESSES, Issue 10 2005
T. Moramarco
Abstract The reliability of a procedure for investigation of flooding into an ungauged river reach close to an urban area is investigated. The approach is based on the application of a semi-distributed rainfall,runoff model for a gauged basin, including the flood-prone area, and that furnishes the inlet flow conditions for a two-dimensional hydraulic model, whose computational domain is the urban area. The flood event, which occurred in October 1998 in the Upper Tiber river basin and caused significant damage in the town of Pieve S. Stefano, was used to test the approach. The built-up area, often inundated, is included in the gauged basin of the Montedoglio dam (275 km2), for which the rainfall,runoff model was adapted and calibrated through three flood events without over-bank flow. With the selected set of parameters, the hydrological model was found reasonably accurate in simulating the discharge hydrograph of the three events, whereas the flood event of October 1998 was simulated poorly, with an error in peak discharge and time to peak of ,58% and 20%, respectively. This discrepancy was ascribed to the combined effect of the rainfall spatial variability and a partial obstruction of the bridge located in Pieve S. Stefano. In fact, taking account of the last hypothesis, the hydraulic model reproduced with a fair accuracy the observed flooded urban area. Moreover, incorporating into the hydrological model the flow resulting from a sudden cleaning of the obstruction, which was simulated by a ,shock-capturing' one-dimensional hydraulic model, the discharge hydrograph at the basin outlet was well represented if the rainfall was supposed to have occurred in the region near the main channel. This was simulated by reducing considerably the dynamic parameter, the lag time, of the instantaneous unit hydrograph for each homogeneous element into which the basin is divided. The error in peak discharge and time to peak decreased by a few percent. A sensitivity analysis of both the flooding volume involved in the shock wave and the lag time showed that this latter parameter requires a careful evaluation. Moreover, the analysis of the hydrograph peak prediction due to error in rainfall input showed that the error in peak discharge was lower than that of the same input error quantity. Therefore, the obtained results allowed us to support the hypothesis on the causes which triggered the complex event occurring in October 1998, and pointed out that the proposed procedure can be conveniently adopted for flood risk evaluation in ungauged river basins where a built-up area is located. The need for a more detailed analysis regarding the processes of runoff generation and flood routing is also highlighted. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Numerical simulation of overbank processes in topographically complex floodplain environments

HYDROLOGICAL PROCESSES, Issue 4 2003
A. P. Nicholas
Abstract This article presents results from an investigation of the hydraulic characteristics of overbank flows on topographically-complex natural river floodplains. A two-dimensional hydraulic model that solves the depth-averaged shallow water form of the Navier,Stokes equations is used to simulate an overbank flow event within a multiple channel reach of the River Culm, Devon, UK. Parameterization of channel and floodplain roughness by the model is evaluated using monitored records of main channel water level and point measurements of floodplain flow depth and unit discharge. Modelled inundation extents and sequences are assessed using maps of actual inundation patterns obtained using a Global Positioning System, observational evidence and ground photographs. Simulation results suggest a two-phase model of flooding at the site, which seems likely to be representative of natural floodplains in general. Comparison of these results with previous research demonstrates the complexity of overbank flows on natural river floodplains and highlights the limitations of laboratory flumes as an analogue for these environments. Despite this complexity, frequency distributions of simulated depth, velocity and unit discharge data closely follow a simple gamma distribution model, and are described by a shape parameter (,) that exhibits clear systematic trends with changing discharge and floodplain roughness. Such statistical approaches have the potential to provide the basis for computationally efficient flood routing and overbank sedimentation models. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Habitat preference by grayling (Thymallus thymallus) in an artificially modified, hydropeaking riverbed: a contribution to understand the effectiveness of habitat enhancement measures

JOURNAL OF APPLIED ICHTHYOLOGY, Issue 1 2003
T. Vehanen
Summary This paper describes a case study to rehabilitate habitat for adult European grayling (Thymallus thymallus L.) in a large river reservoir in northern Finland. A channelled river reach was restored by building small islands and reefs as well as cobble and boulder structures for grayling. The total area of the restored stretch was 1.0 ha. The physical habitat was mapped using an echosounder, Doppler device, tachometer and scuba diving, and modelled with a 2D hydraulic model. The mean water velocity in the modelled stream section was 0.28 m s,1 during 110 m3 s,1 flow and 0.43 m s,1 during 300 m3 s,1 flow. Twelve adult grayling, tagged with transmitters, were released into the area and tracked for a maximum period of 30 days. The grayling largely stayed in the restored area and tended to avoid the unchanged channel of the river. The range of daily movement was from stationary to 2700 m per day. The adult grayling preferred water velocities between 0.20 and 0.45 m s,1, water depths between 0.20 and 1.55 m and coarse substrate. The study provides a small part of the information needed in habitat restoration for grayling. [source]


Overall efficiency evaluation of commercial distillation columns with valve and dualflow trays

AICHE JOURNAL, Issue 9 2010
T. L. Domingues
Abstract The main objective of this work is to establish appropriated ways for estimating the overall efficiencies of industrial distillation columns with valve trays with downcomer and dualflow trays. The knowledge of efficiencies has fundamental importance in the design and performance evaluation of distillation columns. Searching in the literature, a tree of alternatives was identified to compose the tray efficiency model, depending on the mass transfer models, the liquid distribution and vapor flow models on the tray, the liquid entrainment model, the multicomponent mixture equilibrium model, the physical properties models, the height of froth on the tray model and the efficiency definition. In this work, different methods to predict the overall efficiency of distillation columns with valve and dualflow trays were composed and compared with data from three commercial distillation columns under different operating conditions. The models were inserted in the Aspen Plus 12.1 simulator, in Fortran language, together with tray geometrical data, fluid properties and operating data of the distillation columns. For each column, the best thermodynamic package was chosen by checking the temperature profile and overhead and bottom compositions obtained via simulation against the corresponding actual data of industrial columns. A modification in the fraction of holes evaluation that is jetting parameter of the Garcia's hydraulic model of dispersion above the tray was proposed. This modification produced better results than the original model to predict the fraction of holes that are jetting and in the efficiency of dualflow trays and similar results to Garcia model in the efficiency evaluation of valve trays. © 2010 American Institute of Chemical Engineers AIChE J, 2010 [source]


A Retrospective Look at the Water Resource Management Policies in Nassau County, Long Island, New York,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 5 2008
Daniel J. St. Germain
Abstract:, The residents of Nassau County Long Island, New York receive all of their potable drinking water from the Upper Glacial, Jameco/Magothy (Magothy), North Shore, and Lloyd aquifers. As the population of Nassau County grew from 1930 to 1970, the demand on the ground-water resources also grew. However, no one was looking at the potential impact of withdrawing up to 180 mgd (7.9 m3/s) by over 50 independent water purveyors. Some coastal community wells on the north and south shores of Nassau County were being impacted by saltwater intrusion. The New York State Legislature formed a commission to look into the water resources in 1972. The commission projected extensive population growth and a corresponding increase in pumping resulting in a projected 93.5 to 123 mgd (4.1 to 5.5 m3/s) deficit by 2000. In 1986, the New York Legislature passed legislation to strengthen the well permit program and also establish a moratorium on new withdrawals from the Lloyd aquifer to protect the coastal community's only remaining supply of drinking water. Over 30 years has passed since the New York Legislature made these population and pumping projections and it is time to take a look at the accuracy of the projections that led to the moratorium. United States Census data shows that the population of Nassau County did not increase but decreased from 1970 to 2000. Records show that pumping in Nassau County was relatively stable fluctuating between 170 and 200 mgd (7.5 to 8.8 m3/s) from 1970 to 2004, well below the projection of 242 to 321 mgd (10.6 to 14.1 m3/s). Therefore, the population and water demand never grew to projected values and the projected threat to the coastal communities has diminished. With a stable population and water demand, its time to take a fresh look at proactive ground-water resource management in Nassau County. One example of proactive ground-water management that is being considered in New Jersey where conditions are similar uses a ground-water flow model to balance ground water withdrawals, an interconnection model to match supply with demand using available interconnections, and a hydraulic model to balance flow in water mains. New Jersey also conducted an interconnection study to look into how systems with excess capacity could be used to balance withdrawals in stressed aquifer areas with withdrawals in unstressed areas. Using these proactive ground-water management tools, ground-water extraction could be balanced across Nassau County to mitigate potential impacts from saltwater intrusion and provide most water purveyors with a redundant supply that could be used during water emergencies. [source]


Stomatal sensitivity to vapour pressure difference over a subambient to elevated CO2 gradient in a C3/C4 grassland

PLANT CELL & ENVIRONMENT, Issue 8 2003
H. MAHERALI
ABSTRACT In the present study the response of stomatal conductance (gs) to increasing leaf-to-air vapour pressure difference (D) in early season C3 (Bromus japonicus) and late season C4 (Bothriochloa ischaemum) grasses grown in the field across a range of CO2 (200,550 µmol mol,1) was examined. Stomatal sensitivity to D was calculated as the slope of the response of gs to the natural log of externally manipulated D (dgs/dlnD). Increasing D and CO2 significantly reduced gs in both species. Increasing CO2 caused a significant decrease in stomatal sensitivity to D in Br. japonicus, but not in Bo. ischaemum. The decrease in stomatal sensitivity to D at high CO2 for Br. japonicus fit theoretical expectations of a hydraulic model of stomatal regulation, in which gs varies to maintain constant transpiration and leaf water potential. The weaker stomatal sensitivity to D in Bo. ischaemum suggested that stomatal regulation of leaf water potential was poor in this species, or that non-hydraulic signals influenced guard cell behaviour. Photosynthesis (A) declined with increasing D in both species, but analyses of the ratio of intercellular to atmospheric CO2 (Ci/Ca) suggested that stomatal limitation of A occurred only in Br. japonicus. Rising CO2 had the greatest effect on gs and A in Br. japonicus at low D. In contrast, the strength of stomatal and photosynthetic responses to CO2 were not affected by D in Bo. ischaemum. Carbon and water dynamics in this grassland are dominated by a seasonal transition from C3 to C4 photosynthesis. Interspecific variation in the response of gs to D therefore has implications for predicting seasonal ecosystem responses to CO2. [source]


The obligatory role of the kidney in long-term arterial blood pressure control: extending Guyton's model of the circulation

ANAESTHESIA, Issue 11 2009
K. L. Dorrington
Summary We describe a model for the essential role of the kidney in long-term blood pressure regulation. We begin with a simple hydraulic model for the circulation, with a constant circulating volume. We show, with the help of a modification of Guyton's classic diagram, that cardiac output and mean arterial pressure are functions of circulating volume, peripheral resistance, venous and arterial compliances, and the cardiac Starling curve. This approach models only acute changes in a ,closed' circulation , one where there is no intake or excretion of fluid. The model is then adapted to ,open' the circulation, include a role for the kidney, and represent more chronic changes. Arterial pressure is then a sole function of renal behaviour and daily sodium (and liquid) intake, and becomes independent of other cardiovascular variables. As well as generating specific hypotheses for further investigation, these models can be used for the purpose of education in cardiovascular control and the treatment of hypertension. [source]


Design of an Artificial Left Ventricular Muscle: An Innovative Way to Actuate Blood Pumps?

ARTIFICIAL ORGANS, Issue 6 2009
Benjamin Van Der Smissen
Abstract Blood pumps assist or take over the pump function of a failing heart. They are essentially activated by a pusher plate, a pneumatic compression of collapsible sacs, or they are driven by centrifugal pumps. Blood pumps relying upon one of these actuator mechanisms do not account for realistic wall deformation. In this study, we propose an innovative design of a blood pump actuator device which should be able to mimic fairly well global left ventricular (LV) wall deformation patterns in terms of circumferential and longitudinal contraction, as well as torsion. In order to reproduce these basic wall deformation patterns in our actuator device, we designed a novel kind of artificial LV "muscle" composed of multiple actively contracting cells. Its contraction is based on a mechanism by which pressurized air, inside such a cell, causes contraction in one direction and expansion perpendicular to this direction. The organization and geometry of the contractile cells within one artificial LV muscle, the applied pressure in the cells, and the governing LV loading conditions (preload and afterload) together determine the global deformation of the LV wall. Starting from a simple plastic bag, an experimental model based on the abovementioned principle was built and connected to a lumped hydraulic model of the vascular system (including compliance and resistance). The wall deformation pattern of this device was validated visually and its pump performance was studied in terms of LV volume and pressure and heart rate. Our experimental results revealed (i) a global LV motion resembling a real LV, and (ii) a close correlation between our model and a real LV in terms of end-systolic volume and pressure, end-diastolic volume and pressure, stroke volume, ejection fraction and pressure-volume relationship. Our proposed model appears promising and it can be considered as a step forward when compared to currently applied actuator mechanisms, as it will likely result in more physiological intracavity blood flow patterns. [source]


Progress in the Modelling of Air Flow Patterns in Softwood Timber Kilns

ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 3-4 2004
T.A.G. Langrish
Progress in modelling air flow patterns in timber kilns using computational fluid dynamics (CFD) is reviewed in this work. These simulations are intended to predict the distribution of the flow in the fillet spaces between boards in a hydraulic model of a timber kiln. Here, the flow regime between the boards is transitional between laminar and turbulent flow, with Reynolds numbers of the order of 5000. Running the simulation as a transient calculation has shown few problems with convergence issues, reaching a mass residual of 0.2% of the total inflow after 40 to 100 iterations per time step for time steps of 0.01 s. Grid sensitivity studies have shown that non-uniform grids are necessary because of the sudden changes in flow cross section, and the flow simulations are insensitive to grid refinement for non-uniform grids with more than 300,000 cells. The best agreement between the experimentally-measured flow distributions between fillet spaces and those predicted by the simulation have been achieved for (effective) bulk viscosities between the laminar viscosity for water and ten times that value. This change in viscosity is not very large (less than an order of magnitude), given that effective turbulent viscosities are typically several orders of magnitude greater than laminar ones. This result is consistent with the transitional flows here. The effect of weights above the stack can reduce the degree of non-uniformity in air velocities through the stack, especially when thick weights are used, because the stack may then be separated from the eddy at the top of the plenum chamber. [source]