Hydraulic Efficiency (hydraulic + efficiency)

Distribution by Scientific Domains


Selected Abstracts


Numerical and Experimental Analysis of an Axial Flow Left Ventricular Assist Device: The Influence of the Diffuser on Overall Pump Performance

ARTIFICIAL ORGANS, Issue 7 2005
Alexandrina Untaroiu
Abstract:, Thousands of adult cardiac failure patients may benefit from the availability of an effective, long-term ventricular assist device (VAD). We have developed a fully implantable, axial flow VAD (LEV-VAD) with a magnetically levitated impeller as a viable option for these patients. This pump's streamlined and unobstructed blood flow path provides its unique design and facilitates continuous washing of all surfaces contacting blood. One internal fluid contacting region, the diffuser, is extremely important to the pump's ability to produce adequate pressure but is challenging to manufacture, depending on the complex blade geometries. This study examines the influence of the diffuser on the overall LEV-VAD performance. A combination of theoretical analyses, computational fluid (CFD) simulations, and experimental testing was performed for three different diffuser models: six-bladed, three-bladed, and no-blade configuration. The diffuser configurations were computationally and experimentally investigated for flow rates of 2,10 L/min at rotational speeds of 5000,8000 rpm. For these operating conditions, CFD simulations predicted the LEV-VAD to deliver physiologic pressures with hydraulic efficiencies of 15,32%. These numerical performance results generally agreed within 10% of the experimental measurements over the entire range of rotational speeds tested. Maximum scalar stress levels were estimated to be 450 Pa for 6 L/min at 8000 rpm along the blade tip surface of the impeller. Streakline analysis demonstrated maximum fluid residence times of 200 ms with a majority of particles exiting the pump in 80 ms. Axial fluid forces remained well within counter force generation capabilities of the magnetic suspension design. The no-bladed configuration generated an unacceptable hydraulic performance. The six-diffuser-blade model produced a flow rate of 6 L/min against 100 mm Hg for 6000 rpm rotational speed, while the three-diffuser-blade model produced the same flow rate and pressure rise for a rotational speed of 6500 rpm. The three-bladed diffuser configuration was selected over the six-bladed, requiring only an incremental adjustment in revolution per minute to compensate for and ease manufacturing constraints. The acceptable results of the computational simulations and experimental testing encourage final prototype manufacturing for acute and chronic animal studies. [source]


Xylem root and shoot hydraulics is linked to life history type in chaparral seedlings

FUNCTIONAL ECOLOGY, Issue 1 2010
Robert B. Pratt
Summary 1.,Shrubs in fire prone chaparral communities have evolved different life history types in response to fire. A key to understanding the evolution of life history type differences is to understand how physiological traits are linked to differences in life history type. Vascular adaptations are important for delivering an efficient and stable water supply to evergreen chaparral shrub leaves. This study tested for a link between vascular physiology and life history type in chaparral shrubs. 2.,Chaparral shrub species along the south-western coast of North America survive wildfire by three different life histories. Non-sprouters are killed by fire and re-establish exclusively through germination of fire-stimulated seeds, facultative sprouters re-establish by a combination of vegetative sprouting and fire-stimulated seeds, and obligate sprouters re-establish exclusively by vegetative sprouting because their seeds do not survive fire. Non-sprouters and facultative sprouters establish seedlings in the open canopy post fire environment, whereas obligate sprouters establish seedlings in the shady understory of the mature chaparral canopy. 3.,Seedlings of nine species (Rhamnaceae) representing three each of the different life history types were grown in deep containers in a common garden under treatments of sun and shade. Hydraulic conductance was measured using a high-pressure flow meter for all organs, and a vacuum technique was used to measure conductance of fine and woody roots. We predicted that non-sprouters would exhibit greater hydraulic efficiency than the sprouting species, and that facultative sprouters would be more efficient than the shade tolerant obligate sprouters. 4.,Non-sprouters had the greatest hydraulic conductance per unit leaf and sapwood area at the whole seedling level, whereas facultative and obligate sprouters were not different. Comparing hydraulic conductance across major organs (from fine roots to leaves) showed that the hydraulic system was well coordinated. At the whole seedling level, the root system was more of a bottleneck than the shoot system. This pattern was consistent with high resistance extraxylary pathways in roots and differences in root architecture. 5.,The greater hydraulic efficiency of the non-sprouter life history type is attributed to its post-fire pioneering habit and may partially explain the relatively high speciation in the non-sprouters. Lower hydraulic efficiency is associated with a sprouting life history and greater shade tolerance. The seedling root systems represent a hydraulic bottleneck that may place roots under especially intense selection. [source]


Simulating short-circuiting flow in a constructed wetland: the implications of bathymetry and vegetation effects

HYDROLOGICAL PROCESSES, Issue 6 2009
Joong-Hyuk Min
Abstract Short-circuiting flow, commonly experienced in many constructed wetlands, reduces hydraulic retention times in unit wetland cells and decreases the treatment efficiency. A two-dimensional (2-D), physically based, distributed modelling approach was used to systematically address the effects of bathymetry and vegetation on short-circuiting flow, which previously have been neglected or lumped in one-dimensional wetland flow models. In this study, a 2-D transient hydrodynamics with advection-dispersion model was developed using MIKE 21 and calibrated with bromide tracer data collected at the Orlando Easterly Wetland Cell 7. The estimated topographic difference between short-circuiting flow zone and adjacent area ranged from 0·3 to 0·8 m. A range of the Manning roughness coefficient at the short-circuiting flow zone was estimated (0·022,0·045 s m,1/3). Sensitivity analysis of topographical and vegetative heterogeneity deduced during model calibration shows that relic ditches or other ditch-shaped landforms and the associated sparse vegetation along the main flow direction intensify the short-circuiting pattern, considerably affecting 2-D solute transport simulation. In terms of hydraulic efficiency, this study indicates that the bathymetry effect on short-circuiting flow is more important than the vegetation effect. Copyright © 2009 John Wiley & Sons, Ltd. [source]


The challenge of tree height in Eucalyptus regnans: when xylem tapering overcomes hydraulic resistance

NEW PHYTOLOGIST, Issue 4 2010
Giai Petit
Summary ,Recent research suggests that increasing conduit tapering progressively reduces hydraulic constraints caused by tree height. Here, we tested this hypothesis using the tallest hardwood species, Eucalyptus regnans. ,Vertical profiles of conduit dimensions and vessel density were measured for three mature trees of height 47, 51 and 63 m. ,Mean hydraulic diameter (Dh) increased rapidly from the tree apex to the point of crown insertion, with the greatest degree of tapering yet reported (b > 0.33). Conduit tapering was such that most of the total resistance was found close to the apex (82,93% within the first 1 m of stem) and the path length effect was reduced by a factor of 2000. Vessel density (VD) declined from the apex to the base of each tree, with scaling parameters being similar for all trees (a = 4.6; b = ,0.5). ,Eucalyptus regnans has evolved a novel xylem design that ensures a high hydraulic efficiency. This feature enables the species to grow quickly to heights of 50,60 m, beyond the maximum height of most other hardwood trees. [source]


The hydraulic architecture of Juniperus communis L. ssp. communis: shrubs and trees compared

PLANT CELL & ENVIRONMENT, Issue 11 2008
BARBARA BEIKIRCHER
ABSTRACT Juniperus communis ssp. communis can grow like a shrub or it can develop a tree-like habit. In this study, the hydraulic architecture of these contrasting growth forms was compared. We analysed the hydraulic efficiency (leaf-specific conductivity, kl; specific conductivity, ks; Huber value, HV) and the vulnerability to cavitation (the water potential corresponding to a 50% loss of conductivity, ,50), as well as anatomical parameters [mean tracheid diameter, d; mean hydraulic diameter, dh; cell wall reinforcement (t/b)h2] of shrub shoots, tree stems and tree branches. Shrub shoots were similar to tree branches (especially to lower branches) in growth form and conductivity (kl = 1.93 ± 0.11 m2 s,1 MPa,1 10,7, ks = 5.71 ± 0.19 m2 s,1 MPa,1 10,4), but were similar to tree stems in their vulnerability to cavitation (,50 = ,5.81 ± 0.08 MPa). Tree stems showed extraordinarily high kl and ks values, and HV increased from the base up. Stem xylem was more vulnerable to cavitation than branch xylem, where ,50 increased from lower (,50 = ,6.44 ± 0.19 MPa) to upper branches (,50 = ,5.98 ± 0.13 MPa). Conduit diameters were correlated with kl and ks. Data indicate that differences in hydraulic architecture correspond to changes in growth form. In some aspects, the xylem hydraulics of tree-like Juniperus communis differs from that of other coniferous tree species. [source]


Evaluation of the Impeller Shroud Performance of an Axial Flow Ventricular Assist Device Using Computational Fluid Dynamics

ARTIFICIAL ORGANS, Issue 9 2010
Boyang Su
Abstract Generally, there are two types of impeller design used in the axial flow blood pumps. For the first type, which can be found in most of the axial flow blood pumps, the magnet is embedded inside the impeller hub or blades. For the second type, the magnet is embedded inside the cylindrical impeller shroud, and this design has not only increased the rotating stability of the impeller but has also avoided the flow interaction between the impeller blade tip and the pump casing. Although the axial flow blood pumps with either impeller design have been studied individually, the comparisons between these two designs have not been conducted in the literature. Therefore, in this study, two axial flow blood pumps with and without impeller shrouds were numerically simulated with computational fluid dynamics and compared with each other in terms of hydraulic and hematologic performances. For the ease of comparison, these two models have the same inner components, which include a three-blade straightener, a two-blade impeller, and a three-blade diffuser. The simulation results showed that the model with impeller shroud had a lower static pressure head with a lower hydraulic efficiency than its counterpart. It was also found that the blood had a high possibility to deposit on the impeller shroud inner surface, which greatly enhanced the possibility of thrombus formation. The blood damage indices in both models were around 1%, which was much lower than the 13.1% of the axial flow blood pump of Yano et al. with the corresponding experimental hemolysis of 0.033 g/100 L. [source]


Computational Fluid Dynamics Analysis of Blade Tip Clearances on Hemodynamic Performance and Blood Damage in a Centrifugal Ventricular Assist Device

ARTIFICIAL ORGANS, Issue 5 2010
Jingchun Wu
Abstract An important challenge facing the design of turbodynamic ventricular assist devices (VADs) intended for long-term support is the optimization of the flow path geometry to maximize hydraulic performance while minimizing shear-stress-induced hemolysis and thrombosis. For unshrouded centrifugal, mixed-flow and axial-flow blood pumps, the complex flow patterns within the blade tip clearance between the lengthwise upper surface of the rotating impeller blades and the stationary pump housing have a dramatic effect on both the hydrodynamic performance and the blood damage production. Detailed computational fluid dynamics (CFD) analyses were performed in this study to investigate such flow behavior in blade tip clearance region for a centrifugal blood pump representing a scaled-up version of a prototype pediatric VAD. Nominal flow conditions were analyzed at a flow rate of 2.5 L/min and rotor speed of 3000 rpm with three blade tip clearances of 50, 100, and 200 µm. CFD simulations predicted a decrease in the averaged tip leakage flow rate and an increase in pump head and axial thrust with decreasing blade tip clearances from 200 to 50 µm. The predicted hemolysis, however, exhibited a unimodal relationship, having a minimum at 100 µm compared to 50 µm and 200 µm. Experimental data corroborate these predictions. Detailed flow patterns observed in this study revealed interesting fluid dynamic features associated with the blade tip clearances, such as the generation and dissipation of tip leakage vortex and its interaction with the primary flow in the blade-blade passages. Quantitative calculations suggested the existence of an optimal blade tip clearance by which hydraulic efficiency can be maximized and hemolysis minimized. [source]


Development of a Closed Air Loop Electropneumatic Actuator for Driving a Pneumatic Blood Pump

ARTIFICIAL ORGANS, Issue 8 2009
Gi Seok Jeong
Abstract In this study, we developed a small pneumatic actuator that can be used as an extracorporeal biventricular assist device. It incorporated a bellows-transforming mechanism to generate blood-pumping pressure. The cylindrical unit is 88 ± 0.1 mm high, has a diameter of 150 ± 0.1 mm, and weighs 2.4 ± 0.01 kg. In vitro, maximal outflow at the highest pumping rate (PR) exceeded 8 L/min when two 55 mL blood sacs were used under an afterload pressure of 100 mm Hg. At a pumping rate of 100 beats per minute (bpm), maximal hydraulic efficiency was 9.34% when the unit supported a single ventricle and 13.8% when it supported both ventricles. Moreover, pneumatic efficiencies of the actuator were 17.3% and 33.1% for LVAD and BVAD applications, respectively. The energy equivalent pressure was 62.78,208.10 mm Hg at a PR of 60,100 bpm, and the maximal value of dP/dt during systole was 1269 mm Hg/s at a PR of 60 bpm and 979 mm Hg/s at a PR of 100 bpm. When the unit was applied to 15 calves, it stably pumped 3,4 L/min of blood at 60 bpm, and no mechanical malfunction was experienced over 125 days of operation. We conclude that the presently developed pneumatic actuator can be utilized as an extracorporeal biventricular assist device. [source]