Home About us Contact | |||
Hydraulic Characteristics (hydraulic + characteristic)
Selected AbstractsSupplementary data confirming the relationship between critical Shields stress, grain size and bed slopeEARTH SURFACE PROCESSES AND LANDFORMS, Issue 11 2007Gareth Pender Abstract This article presents new experimental data on threshold conditions for motion of coarse uniform sediments. The experiments were conducted with 2·8 mm gravel in a 7·5 m long by 0·3 m wide flume and included measurements of hydraulic characteristics and rate of bed particle movement for a range of flows at different bed slopes. A reference transport method was used to define the beginning of sediment motion. Results from experiments with glass balls (diameters 6 and 9 mm) and coarse uniform gravels (17·5 and 38·6 mm) conducted by other researchers were used as an additional independent data set. The experimental data confirm the recent finding that the critical Shields stress for motion of coarse uniform sediment varies with both grain size and bed slope. Copyright © 2007 John Wiley & Sons, Ltd. [source] Field and laboratory estimates of pore size properties and hydraulic characteristics for subarctic organic soilsHYDROLOGICAL PROCESSES, Issue 19 2007Sean K. Carey Abstract Characterizing active and water-conducting porosity in organic soils in both saturated and unsaturated zones is required for models of water and solute transport. There is a limitation, largely due to lack of data, on the hydraulic properties of unsaturated organic soils in permafrost regions, and in particular, the relationship between hydraulic conductivity and pressure head. Additionally, there is uncertainty as to what fraction of the matrix and what pores conduct water at different pressure heads, as closed and dead-end pores are common features in organic soil. The objectives of this study were to determine the water-conducting porosity of organic soils for different pore radii ranges using the method proposed by Bodhinayake et al. (2004) [Soil Sci. Soc. Am. J. 68:760,769] and compare these values to active pore size distributions from resin-impregnated laboratory thin sections and pressure plate analysis. Field experiments and soil samples were completed in the Wolf Creek Research Basin, Yukon. Water infiltration rates were measured 16 times using a tension infiltrometer (TI) at 5 different pressure heads from , 150 to 0 mm. This data was combined with Gardiner's (1958) exponential unsaturated hydraulic conductivity function to provide water-conducting porosity for different pore-size ranges. Total water-conducting porosity was 1·1 × 10,4, which accounted for only 0·01% of the total soil volume. Active pore areas obtained from 2-D image analysis ranged from 0·45 to 0·60, declining with depth. Macropores accounted for approximately 65% of the water flux at saturation, yet all methods suggest macropores account for only a small fraction of the total porosity. Results among the methods are highly equivocal, and more research is required to reconcile field and laboratory methods of pore and hydraulic characteristics. However, this information is of significant value as organic soils in permafrost regions are poorly characterized in the literature. Copyright © 2007 John Wiley & Sons, Ltd. [source] Numerical simulation of overbank processes in topographically complex floodplain environmentsHYDROLOGICAL PROCESSES, Issue 4 2003A. P. Nicholas Abstract This article presents results from an investigation of the hydraulic characteristics of overbank flows on topographically-complex natural river floodplains. A two-dimensional hydraulic model that solves the depth-averaged shallow water form of the Navier,Stokes equations is used to simulate an overbank flow event within a multiple channel reach of the River Culm, Devon, UK. Parameterization of channel and floodplain roughness by the model is evaluated using monitored records of main channel water level and point measurements of floodplain flow depth and unit discharge. Modelled inundation extents and sequences are assessed using maps of actual inundation patterns obtained using a Global Positioning System, observational evidence and ground photographs. Simulation results suggest a two-phase model of flooding at the site, which seems likely to be representative of natural floodplains in general. Comparison of these results with previous research demonstrates the complexity of overbank flows on natural river floodplains and highlights the limitations of laboratory flumes as an analogue for these environments. Despite this complexity, frequency distributions of simulated depth, velocity and unit discharge data closely follow a simple gamma distribution model, and are described by a shape parameter (,) that exhibits clear systematic trends with changing discharge and floodplain roughness. Such statistical approaches have the potential to provide the basis for computationally efficient flood routing and overbank sedimentation models. Copyright © 2002 John Wiley & Sons, Ltd. [source] Simulating the hydraulic characteristics of the lower Yellow River by the finite-volume techniqueHYDROLOGICAL PROCESSES, Issue 14 2002Qing Wan Abstract The finite-volume technique is used to solve the two-dimensional shallow-water equations on unstructured mesh consisting of quadrilateral elements. In this paper the algorithm of the finite-volume method is discussed in detail and particular attention is paid to accurately representing the complex irregular computational domain. The lower Yellow River reach from Huayuankou to Jiahetan is a typical meandering river. The generation of the computational mesh, which is used to simulate the flood, is affected by the distribution of water works in the river channel. The spatial information about the two Yellow River levee, the protecting dykes, and those roads that are obviously higher than the ground, need to be used to generate the computational mesh. As a result these dykes and roads locate the element interfaces of the computational mesh. In the model the finite-volume method is used to solve the shallow-wave equations, and the Osher scheme of the empirical function is used to calculate the flux through the interface between the neighbouring elements. The finite-volume method has the advantage of using computational domain with complex geometry, and the Osher scheme is a method based on characteristic theory and is a monotone upwind numerical scheme with high resolution. The flood event with peak discharge of 15 300 m3/s, occurring in the period from 30 July to 10 August 1982, is simulated. The estimated result indicates that the simulation method is good for routing the flood in a region with complex geometry. Copyright © 2002 John Wiley & Sons, Ltd. [source] Numerical simulation of thermal,hydraulic characteristics in a proton exchange membrane fuel cellINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 5 2003Y.M. Ferng Abstract The thermal,hydraulic characteristics of a proton exchange membrane fuel cell (PEMFC) are numerically simulated by a simplified two-phase, multi-component flow model. This model consists of continuity, momentum, energy and concentration equations, and appropriate equations to consider the varying flow properties of the gas,liquid two-phase region in a PEMFC. This gas,liquid two-phase characteristic is not considered in most of the previous simulation works. The calculated thermal,hydraulic phenomena of a PEMFC are reasonably presented in this paper, which include the distributions of flow vector, temperature, oxygen concentration, liquid water saturation, and current density, etc. Coupled with the electrochemical reaction equations, current flow model can predict the cell voltage vs current density curves (i.e. performance curves), which are validated by the single-cell tests. The predicted performance curves for a PEMFC agree well with the experimental data. In addition, the positive effect of temperature on the cell performance is also precisely captured by this model. The model presented herein is essentially developed from the thermal,hydraulic point of view and can be considered as a stepping-stone towards a full complete PEMFC simulation model that can help the optima design for the PEMFC and the enhancement of cell efficiency. Copyright © 2003 John Wiley & Sons, Ltd. [source] STOCHASTIC WATER QUALITY ANALYSIS USING RELIABILITY METHOD,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 3 2001Kun-Yeun Han ABSTRACT: This study developed a QUAL2E-Reliability Analysis (QUAL2E-RA) model for the stochastic water quality analysis of the downstream reach of the main Han River in Korea. The proposed model is based on the QUAL2E model and incorporates the Advanced First-Order Second-Moment (AFOSM) and Mean-Value First-Order Second-Moment (MFOSM) methods. After the hydraulic characteristics from standard step method are identified, the optimal reaction coefficients are then estimated using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. Considering variations in river discharges, pollutant loads from tributaries, and reaction coefficients, the violation probabilities of existing water quality standards at several locations in the river were computed from the AFOSM and MFOSM methods, and the results were compared with those from the Monte Carlo method. The statistics of the three uncertainty analysis methods show that the outputs from the AFOSM and MFOSM methods are similar to those from the Monte Carlo method. From a practical model selection perspective, the MFOSM method is more attractive in terms of its computational simplicity and execution time. [source] MANAGEMENT OF FLOOD CONTROL SUMPS AND POLLUTANT TRANSPORT,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 1 2001Edward H. Smith ABSTRACT: Levee sump systems are used by many riverine communities for temporary storage of urban wet weather flows. The hydrologic performance and transport of stormwater pollutants in sump systems, however, have not been systematically studied. The objective of this paper is to present a case study to demonstrate development and application of a procedure for assessing the hydraulic performance of flood control sumps in an urban watershed. Two sumps of highly variable physical and hydraulic characteristics were selected for analysis. A hydrologic modeling package was used to estimate the flow hydrograph for each outfall as part of the flow balance for the sump. To validate these results, a water balance was used to estimate the total runoff using sump operational data. The hydrologic model calculations provide a satisfactory estimate of the total runoff and its time-distribution to the sump. The model was then used to estimate pollutant loads to the sump and to the river. Although flow of stormwater through a sump system is regulated solely by flood-control requirements, these sumps may function as sedimentation basins that provide purification of stormwater. A sample calculation of removals of several conventional pollutants in the target sumps using a mass balance approach is presented. [source] Height-related trends in leaf xylem anatomy and shoot hydraulic characteristics in a tall conifer: safety versus efficiency in water transportNEW PHYTOLOGIST, Issue 1 2008D. R. Woodruff Summary ,,Hydraulic vulnerability of Douglas-fir (Pseudotsuga menziesii) branchlets decreases with height, allowing shoots at greater height to maintain hydraulic conductance (Kshoot) at more negative leaf water potentials (,l). ,,To determine the basis for this trend shoot hydraulic and tracheid anatomical properties of foliage from the tops of Douglas-fir trees were analysed along a height gradient from 5 to 55 m. ,,Values of ,l at which Kshoot was substantially reduced, declined with height by 0.012 Mpa m,1. Maximum Kshoot was reduced by 0.082 mmol m,2 MPa,1 s,1 for every 1 m increase in height. Total tracheid lumen area per needle cross-section, hydraulic mean diameter of leaf tracheid lumens, total number of tracheids per needle cross-section and leaf tracheid length decreased with height by 18.4 µm2 m,1, 0.029 µm m,1, 0.42 m,1 and 5.3 µm m,1, respectively. Tracheid thickness-to-span ratio (tw/b)2 increased with height by 1.04 × 10,3 m,1 and pit number per tracheid decreased with height by 0.07 m,1. ,,Leaf anatomical adjustments that enhanced the ability to cope with vertical gradients of increasing xylem tension were attained at the expense of reduced water transport capacity and efficiency, possibly contributing to height-related decline in growth of Douglas fir. [source] Considerations for the design of organic mulch permeable reactive barriersREMEDIATION, Issue 1 2007Farrukh Ahmad Organic mulch consists of insoluble carbon biopolymers that are enzymatically hydrolyzed during decomposition to release aqueous total organic carbon (TOC). The released TOC is utilized by microorganisms as an electron donor to transform electrophilic contaminants via reductive pathways. Over the last decade, organic mulch permeable reactive barriers (PRBs), or biowalls, have received increased interest as a relatively inexpensive slow-release electron donor technology for addressing contaminated groundwater. To date, biowalls have been installed to enhance the passive bioremediation of groundwater contaminated with a variety of electrophilic compounds, including chlorinated solvents, explosives, and perchlorate. In addition, several mulch biowall projects are currently under way at several U.S. Department of Defense facilities. However, at the present time, the guidelines available for the design of mulch PRBs are limited to a few case studies published in the technical literature. A biowall design, construction, and operation protocol document is expected to be issued by the Air Force Center for Environmental Excellence in 2007. In this publication, three technical considerations that can have a significant impact on the design and performance of mulch PRBs are presented and discussed. These technical considerations are: (1) hydraulic characteristics of the mulch bed; (2) biochemical characteristics of different types of organic amendments used as mulch PRB fill materials; and (3) a transport model that can be used to estimate the required PRB thickness to attain cleanup standards. © 2007 Wiley Periodicals, Inc. [source] |