Home About us Contact | |||
Hydraulic Actuators (hydraulic + actuator)
Selected AbstractsRobust impedance control of a hydraulic suspension systemINTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, Issue 8 2010Mohammad Mehdi FatehArticle first published online: 2 JUN 200 Abstract A novel robust impedance control approach is developed to control dynamic behavior of a vehicle subject to road disturbances. This behavior is predetermined as an impedance rule to achieve passenger comfort and vehicle handling by the use of a hydraulically actuated suspension system. Impedance control law is simple, free of model and efficient to apply for a broad range of road conditions. Moreover, it relates comfort to handling. This control approach can provide a desired comfort when passing a bump, and both desired comfort and handling after passing a bump. Robust position and force controls are used to implement the robust impedance control with the presence of uncertainties. A transformed proportional,integral,derivative control is proposed to perform the robust control. The system stability is analyzed and analytical results are confirmed by simulations. A quarter-car model of suspension system and a nonlinear model of hydraulic actuator are used to simulate the control system. Copyright © 2009 John Wiley & Sons, Ltd. [source] Closed-form solution for seismic response of adjacent buildings with linear quadratic Gaussian controllersEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 2 2002Y. L. Xu Abstract Closed-form solution for seismic response of adjacent buildings connected by hydraulic actuators with linear quadratic Gaussian (LQG) controllers is presented in this paper. The equations of motion of actively controlled adjacent buildings against earthquake are first established. The complex modal superposition method is then used to determine dynamic characteristics, including modal damping ratio, of actively controlled adjacent buildings. The closed-form solution for seismic response of the system is finally derived in terms of the complex dynamic characteristics, the pseudo-excitation method and the residue theorem. By using the closed-form solution, extensive parametric studies can be carried out for the system of many degrees of freedom. The beneficial parameters of LQG controllers for achieving the maximum response reduction of both buildings using reasonable control forces can be identified. The effectiveness of LQG controllers for this particular application is evaluated in this study. The results show that for the adjacent buildings of different dynamic properties, if the parameters of LQG controllers are selected appropriately, the modal damping ratios of the system can be significantly increased and the seismic responses of both buildings can be considerably reduced. Copyright © 2001 John Wiley & Sons, Ltd. [source] Active tendon control of cable-stayed bridges: a large-scale demonstrationEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 7 2001Frédéric Bossens This paper presents a strategy for active damping of cable structures, using active tendons. The first part of the paper summarizes the theoretical background: the control law is briefly presented together with the main results of an approximate linear theory which allows the prediction of closed-loop poles with a root locus technique. The second part of the paper reports on experimental results obtained with two test structures: the first one is a small size mock-up representative of a cable-stayed bridge during the construction phase. The control of the parametric vibration of passive cables due to deck vibration is demonstrated. The second one is a 30 m long mock-up built on the reaction wall of the ELSA test facility at the JRC Ispra (Italy); this test structure is used to demonstrate the practical implementation of the control strategy with hydraulic actuators. Copyright © 2001 John Wiley & Sons, Ltd. [source] Experimental and numerical studies on dynamic crack growth in layered slate rock under wedge impact loads: part II , non-plane strain problemFATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 10 2007M. R. ALAM ABSTRACT Dynamic crack propagation in non-plane strain (or 3D) slate blocks under wedge impact loads was investigated numerically in this part of the paper. A parabolic-shaped crack trajectory was taken into consideration to model the crack propagation in slate blocks for analyzing the impact splitting of layered slate rock. Major and minor axes of the parabola were determined from the condition of equal mode I stress intensity factors (SIFs) along the crack front. Mode I SIFs were determined for experimental breaking loads for each increment of crack growth in a manner similar to that mentioned in part I of this paper. These values were compared with the plane strain material fracture toughness value obtained from experimental studies and very good agreement was obtained between them, for the case of actual load applied on the specimen. Numerical analysis of a field problem, i.e., separation of a large-sized slate slab from the rock strata in a slate quarry using wedge impacting, was also carried out in this paper. It can be observed that a large magnitude of load is required to break large-sized slate blocks; but this load is applied through a number of smaller load-capacity actuators-in-parallel, requiring large power capacity for the hydraulic pumps. However, this required power could be reduced considerably if the load applied on the line of hydraulic actuators is cascaded across the (line of) actuators (starting from centrally placed actuators) with a small time delay (equal to the initial crushing time in slate rock). [source] Switching contact task control in hydraulic actuators: Stability analysis and experimental evaluationINTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, Issue 17 2009P. Sekhavat Abstract A switching contact task control for hydraulic actuators is proposed. The controller is built upon three individually designed control laws for three phases of motion: (1) position regulation in free space, (2) impact suppression and stable transition from free to constrained motion and (3) force regulation in sustained-contact motion. The position and force control schemes are capable of asymptotic set-point regulation in the presence of actuator friction and without the complexity of sliding mode or adaptive control techniques. The intermediate impact control scheme is included for the first time to dampen the undesirable impacts and dissipate the impact energy that could potentially drive the whole system unstable. The solution concept and the stability of the complete switching control system are analyzed rigorously using the Filippov's solution concept and the concept of Lyapunov exponents. Both computer simulations and experiments are carried out to demonstrate the efficacy of the designed switching control law. Copyright © 2009 John Wiley & Sons, Ltd. [source] Simulation of a deformable multibody system with hydraulics and controlPROCEEDINGS IN APPLIED MATHEMATICS & MECHANICS, Issue 1 2006Markus Dibold Numerous contributions have been made concerning multibody systems, hydraulic actuators or the design of feedback controllers. A system that combines these fields has been studied rarely. In the present work the systematic simulation of an entire machine, which consists of structural mechanical elements where single masses are transported, hydraulic actuation systems and a closed loop controller is studied. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] |