Hybridization Process (hybridization + process)

Distribution by Scientific Domains


Selected Abstracts


New Anthraquinone Derivatives as Electrochemical Redox Indicators for the Visualization of the DNA Hybridization Process

ELECTROANALYSIS, Issue 1 2010
Agata Kowalczyk
Abstract Interactions of dsDNA and ssDNA, at the surface of gold and silver electrodes, with three novel anthraquinone derivatives: 3-(9,,10,-dioxo-9,,10,-dihydro-anthracen-1-yl)-7,11-di(carboxymethyl)-3,7,11-triazatridecanedioic acid, (AQ-1); 1-(9,,10,-dioxo-9,,10,-dihydro-anthracen-1yl)-9-carboxymethyl-5-methyl-1,5,9-triazaundecanoicacid, (AQ-2); and N -(2-(9,10-dioxo-9,10-dihydro-anthracen-1-ylamino)ethyl)-2-(1,4,10,13-tetraoxa-7,16-diazacyclooctadecan-7-yl)acetamide, (AQ-3) are studied. These derivatives are well soluble in water and phosphate buffer solutions. The square wave voltammetric behavior of these redox indicators is described and the parameters of interactions with DNA are reported. It is also pointed out that these compounds can be employed as the hybridization indicators. The difference in the binding ability of the particular redox indicator to single and double stranded DNA can be used for the detection of the complementary nucleic acids. [source]


Quantum-Dot-Functionalized Poly(styrene- co -acrylic acid) Microbeads: Step-Wise Self-Assembly, Characterization, and Applications for Sub-femtomolar Electrochemical Detection of DNA Hybridization

ADVANCED FUNCTIONAL MATERIALS, Issue 7 2010
Haifeng Dong
Abstract A novel nanoparticle label capable of amplifying the electrochemical signal of DNA hybridization is fabricated by functionalizing poly(styrene- co -acrylic acid) microbeads with CdTe quantum dots. CdTe-tagged polybeads are prepared by a layer-by-layer self-assembly of the CdTe quantum dots (diameter,=,3.07,nm) and polyelectrolyte on the polybeads (diameter,=,323,nm). The self-assembly procedure is characterized using scanning and transmission electron microscopy, and X-ray photoelectron, infrared and photoluminescence spectroscopy. The mean quantum-dot coverage is (9.54,±,1.2),×,103 per polybead. The enormous coverage and the unique properties of the quantum dots make the polybeads an effective candidate as a functionalized amplification platform for labelling of DNA or protein. Herein, as an example, the CdTe-tagged polybeads are attached to DNA probes specific to breast cancer by streptavidin,biotin binding to construct a DNA biosensor. The detection of the DNA hybridization process is achieved by the square-wave voltammetry of Cd2+ after the dissolution of the CdTe tags with HNO3. The efficient carrier-bead amplification platform, coupled with the highly sensitive stripping voltammetric measurement, gives rise to a detection limit of 0.52 fmol L,1 and a dynamic range spanning 5 orders of magnitude. This proposed nanoparticle label is promising, exhibits an efficient amplification performance, and opens new opportunities for ultrasensitive detection of other biorecognition events. [source]


Electronic transport through large quantum dots in the Kondo regime

PHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 2 2003
P. Stefa
Abstract Conductance through a large two-level quantum dot is investigated theoretically in the strong coupling regime. In large quantum dots the separation between discrete levels becomes smaller than the level width due to strong hybridization with electrodes. In such circumstances, apart from strong electronic correlations in the quantum dot, the indirect interaction between both the spatial levels comes into play. It takes place in lateral quantum dots, where the spatial level index is not conserved during the hybridization process with electrodes. This interaction shifts the Kondo resonance peak in the density of states out of the Fermi surface and alters its intensity. This feature can be observed in the differential conductance dependence vs. bias voltage. The virtual inter-level mixing is suppressed for temperatures above the Kondo temperature of the system. The results of theoretical predictions are compared with the results of experimental conductance measurements performed on large quantum dots and some non-typical conductance features are clarified. [source]


Ultrahighly Sensitive Homogeneous Detection of DNA and MicroRNA by Using Single-Silver-Nanoparticle Counting

CHEMISTRY - A EUROPEAN JOURNAL, Issue 3 2010
Fagong Xu Dr.
Abstract DNA and RNA analysis is of high importance for clinical diagnoses, forensic analysis, and basic studies in the biological and biomedical fields. In this paper, we report the ultrahighly sensitive homogeneous detection of DNA and microRNA by using a novel single-silver-nanoparticle counting (SSNPC) technique. The principle of SSNPC is based on the photon-burst counting of single silver nanoparticles (Ag NPs) in a highly focused laser beam (about 0.5,fL detection volume) due to Brownian motion and the strong resonance Rayleigh scattering of single Ag NPs. We first investigated the performance of the SSNPC system and then developed an ultrasensitive homogeneous detection method for DNA and microRNA based on this single-nanoparticle technique. Sandwich nucleic acid hybridization models were utilized in the assays. In the hybridization process, when two Ag-NP,oligonucleotide conjugates were mixed in a sample containing DNA (or microRNA) targets, the binding of the targets caused the Ag NPs to form dimers (or oligomers), which led to a reduction in the photon-burst counts. The SSNPC method was used to measure the change in the photon-burst counts. The relationship between the change of the photon-burst counts and the target concentration showed a good linearity. This method was used for the assay of sequence-specific DNA fragments and microRNAs. The detection limits were at about the 1,fM level, which is 2,5 orders of magnitude more sensitive than current homogeneous methods. [source]