Home About us Contact | |||
Hybridization Patterns (hybridization + pattern)
Selected AbstractsA novel genotypic test for rapid detection of multidrug-resistant Mycobacterium tuberculosis isolates by a multiplex probe arrayJOURNAL OF APPLIED MICROBIOLOGY, Issue 4 2007S.-L. Zhang Abstract Aims:, To develop and evaluate a novel genotypic test for rapid detection of rifampicin and isoniazid resistance of multidrug-resistant (MDR) Mycobacterium tuberculosis isolates by a multiplex probe array. Methods and Results:, A multiplex probe array was designed for genotypic test to simultaneously screen the mutations of rpoB, katG, inhA and ahpC genes, associated with rifampin and isoniazid resistance in M. tuberculosis, with a probe detecting one of the recently confirmed genetic markers of isoniazid resistance ahpC -6 and -9 locus added. By using the genotypic test developed, 52 MDR isolates were identified, among which 46 isolates had mutations in rpoB (88·5%) and 45 at codon 315 of katG, regulatory region of inhA and oxyR - ahpC intergenic region (86·5%), whereas all 35 susceptible isolates identified showed a wild-type hybridization pattern. The sensitivity and specificity were 88·5% and 100% for rifampicin resistance, and 86·5% and 100% for isoniazid resistance, respectively. Conclusion:, A rapid and simultaneous detection of rifampicin and isoniazid resistance caused by the mutations of rpoB, katG, inhA and ahpC genes in M. tuberculosis isolates could be achieved by a multiplex probe array developed. Significance and Impact of the Study:, This genotypic test protocol has the potential to be developed on clinical application for the rapid detection of drug resistant M. tuberculosis isolates before an efficient chemotherapy is initiated. [source] Electrophoretic Karyotype of the Obligate Biotrophic Parasite Plasmodiophora brassicae Wor.JOURNAL OF PHYTOPATHOLOGY, Issue 6 2001H. Graf Classical genetic analysis is not possible with the protist Plasmodiophora brassicae due to the intracellular life of this obligate biotrophic parasite. An electrophoretic karyotype has been obtained using contour-clamped homogeneous electric field gel electrophoresis to facilitate gene mapping of P. brassicae. Using two different separation conditions 16 chromosomal bands of P. brassicae were distinguished ranging in approximate size from 2.2 Mb to 680 kb. According to this determination of chromosome number and size, the total genome size of P. brassicae was estimated to be 20.3 Mb. The chromosomal bands were further designated by their hybridization pattern with repetitive elements of P. brassicae. The repetitive element H4 (1800 bp) hybridized with 14 chromosomal bands, but the sequence of H4 showed no homology to known centromere or telomere structures and revealed no repetitive motifs. [source] Design and testing of ,genome-proxy' microarrays to profile marine microbial communitiesENVIRONMENTAL MICROBIOLOGY, Issue 2 2008Virginia I. Rich Summary Microarrays are useful tools for detecting and quantifying specific functional and phylogenetic genes in natural microbial communities. In order to track uncultivated microbial genotypes and their close relatives in an environmental context, we designed and implemented a ,genome-proxy' microarray that targets microbial genome fragments recovered directly from the environment. Fragments consisted of sequenced clones from large-insert genomic libraries from microbial communities in Monterey Bay, the Hawaii Ocean Time-series station ALOHA, and Antarctic coastal waters. In a prototype array, we designed probe sets to 13 of the sequenced genome fragments and to genomic regions of the cultivated cyanobacterium Prochlorococcus MED4. Each probe set consisted of multiple 70-mers, each targeting an individual open reading frame, and distributed along each ,40,160 kbp contiguous genomic region. The targeted organisms or clones, and close relatives, were hybridized to the array both as pure DNA mixtures and as additions of cells to a background of coastal seawater. This prototype array correctly identified the presence or absence of the target organisms and their relatives in laboratory mixes, with negligible cross-hybridization to organisms having , ,75% genomic identity. In addition, the array correctly identified target cells added to a background of environmental DNA, with a limit of detection of ,0.1% of the community, corresponding to ,103 cells ml,1 in these samples. Signal correlated to cell concentration with an R2 of 1.0 across six orders of magnitude. In addition, the array could track a related strain (at 86% genomic identity to that targeted) with a linearity of R2 = 0.9999 and a limit of detection of ,1% of the community. Closely related genotypes were distinguishable by differing hybridization patterns across each probe set. This array's multiple-probe, ,genome-proxy' approach and consequent ability to track both target genotypes and their close relatives is important for the array's environmental application given the recent discoveries of considerable intrapopulation diversity within marine microbial communities. [source] Ecotype diversity in the marine picoeukaryote Ostreococcus (Chlorophyta, Prasinophyceae)ENVIRONMENTAL MICROBIOLOGY, Issue 6 2005Francisco Rodríguez Summary The importance of the cyanobacteria Prochlorococcus and Synechococcus in marine ecosystems in terms of abundance and primary production can be partially explained by ecotypic differentiation. Despite the dominance of eukaryotes within photosynthetic picoplankton in many areas a similar differentiation has never been evidenced for these organisms. Here we report distinct genetic [rDNA 18S and internal transcribed spacer (ITS) sequencing], karyotypic (pulsed-field gel electrophoresis), phenotypic (pigment composition) and physiological (light-limited growth rates) traits in 12 Ostreococcus strains (Prasinophyceae) isolated from various marine environments and depths, which suggest that the concept of ecotype could also be valid for eukaryotes. Internal transcribed spacer phylogeny grouped together four deep strains isolated between 90 m and 120 m depth from different geographical origins. Three deep strains displayed larger chromosomal bands, different chromosome hybridization patterns, and an additional chlorophyll (chl) c -like pigment. Furthermore, growth rates of deep strains show severe photo-inhibition at high light intensities, while surface strains do not grow at the lowest light intensities. These features strongly suggest distinct adaptation to environmental conditions encountered at surface and the bottom of the oceanic euphotic zone, reminiscent of that described in prokaryotes. [source] INTER- AND INTRASPECIFIC VARIATION OF THE PSEUDO-NITZSCHIA DELICATISSIMA COMPLEX (BACILLARIOPHYCEAE) ILLUSTRATED BY RRNA PROBES, MORPHOLOGICAL DATA AND PHYLOGENETIC ANALYSES,JOURNAL OF PHYCOLOGY, Issue 2 2006Nina Lundholm A study of 25 cultures tentatively identified as Pseudo-nitzschia delicatissima (Cleve) Heiden, and originating from geographically widely distributed locations, showed both morphological and genetic variation among strains. Use of rRNA-targeted DNA probes on 17 different strains showed large variation in the hybridization patterns. Detailed morphological studies placed the isolates into three groups. The sample on which the neotype of P. delicatissima is based was also examined, and used to establish the morphological identity of P. delicatissima. Phylogenetic analyses of 16 strains, based on sequences of internal transcriber spacer 1 (ITS1), 5.8S and ITS2 of the nuclear-encoded rDNA, supported the morphological observations and the hybridization studies, and revealed large genetic variation among strains. A combination of the morphological and molecular findings resulted in the description of two new species, P. decipiens sp. nov. and P. dolorosa sp. nov. P. dolorosa has a mixture of one or two rows of poroids in the striae whereas P. delicatissima always has two rows. In addition, P. dolorosa has wider valves and a lower density of poroids. P. decipiens differs from P. delicatissima by a higher density of striae on the valve face as well as a higher density of poroids on the girdle bands. Among the strains referred to P. delicatissima, an epitype was selected. Large genetic variation was found among the P. delicatissima strains and a subdivision into two major clades represent cryptic species. [source] Sensitive and Specific Digoxigenin-labelled RNA Probes for Routine Detection of Citrus tristeza virus by Dot-blot HybridizationJOURNAL OF PHYTOPATHOLOGY, Issue 6 2006L. Barbarossa Abstract A non-radioactive dot-blot hybridization assay for the successful detection of Citrus tristeza virus (CTV) RNA in total nucleic acid extracts of infected citrus was developed. Two digoxigenin (DIG)-labelled minus-sense riboprobes, complementary to the coat protein gene sequence of a Chinese and an Apulian CTV isolate were synthesized. Several citrus tissues were evaluated as optimal virus source and leaf petioles were found appropriate material for reliable detection. The hybridization assay showed a detection limit corresponding to 0.2 mg of fresh infected tissue. The riboprobes allowed CTV detection in isolates from different geographical areas, grown in the screenhouse or in the field, resulting in similar hybridization patterns. The infected trees were tested during different seasons with positive results, although from July to August most of the samples gave a weaker hybridization signal, compared to other seasons. The high sensitivity and reliability of the molecular hybridization assay described make it a good alternative to serological methods for CTV detection. [source] Fluorescence in situ hybridization polymorphism using two repetitive DNA clones in different cultivars of wheatPLANT BREEDING, Issue 5 2003A. Schneider Abstract Twenty-two wheat cultivars and a wheat line were analysed with two-colour fluorescence in situ hybridization (FISH) using the pSc119.2 and pAs1 repetitive DNA clones to detect if polymorphism could be observed in the hybridization patterns of different wheat cultivars. The FISH hybridization pattern of ,Chinese Spring' was compared with wheat cultivars of different origins. Differences were observed in the hybridization patterns of chromosomes 4A, 5A, 1B, 2B, 3B, 5B, 6B, 7B, 1D, 2D, 3D and 4D. Although a low level of polymorphism exists in the FISH pattern of different wheat cultivars, it is possible to identify 17 pairs of chromosomes according to their hybridization patterns with these two probes. This study will help to predict the expected variation in the FISH pattern when analysing wheat genetic stocks of different origin. It is presumed that variation in hybridization patterns are caused by chromosome structural rearrangements and by differences in the amount and location of repetitive sequences in the cultivars analysed. [source] Patterns of cryptic hybridization revealed using an integrative approach: a case study on genets (Carnivora, Viverridae, Genetta spp.) from the southern African subregionBIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2005PHILIPPE GAUBERT Recent years have seen the development of molecular-based methodologies to investigate hybridization and its impact on the evolutionary process. However, morphological characterization of hybrid zones has only scantily been considered, especially in zootaxa. Thus, the level of congruence between molecular and morphological characters when attempting to detect hybrids remains a poorly tackled area. The genets (genus Genetta) provide an ideal case study for further investigation of the respective contribution of morphology and DNA in hybrid zone characterization because (1) their morphology has recently been exhaustively explored and (2) the existence of hybrid zones in southern Africa was proposed in the literature. We assessed levels of hybridization among the southern African genets, and questioned the role of ecological factors on the hybridization patterns detected. We used an integrative approach involving nine discrete morphological characters and a diagnostic discriminant function, geometric morphometrics and sequences of cytochrome b including collection specimens. The combination of independent materials allowed us to accurately reassess the level of hybridization in southern African genets, and revealed cryptic, interspecific gene flows. Morphology unambiguously detected a low number of G. maculata × G. tigrina hybrids and rejected the hypothesis of a large intergradation zone in KwaZulu-Natal, thus supporting the species status of the two genets. Cytochrome b analyses revealed: (1) cryptic, massive hybridization between G. tigrina and the sympatric G. felina, and (2) a trace of reticulation (one sequence) between G. tigrina and the allopatric G. genetta. The type specimen of G. mossambica Matschie, 1902 is considered to be a morphological hybrid between G. maculata and G. angolensis. Remarkably, the morphological approaches (discrete characters and morphometrics) proved complementary to conclusions derived from cytochrome b sequences. Whilst morphometrics was generally unable to accurately identify all putative hybrids, this approach revealed diagnostic cranial shape differences between recognized species as well as the cryptic G. ,letabae' (included in the super-species G. maculata). Morphometrics also confirmed the diagnostic value and age dependency of discrete characters. Our integrative approach appeared necessary to the detection of cryptic hybridizations and to the comprehensive characterization of hybrid zones. The recurrent detection of hybrids exhibiting tigrina -like coat patterns may suggest (1) asymmetric hybridization of G. tigrina males to females of other species and (2) positive selection for tigrina -like phenotype in South African habitats, but these hypotheses will have to be further tested using other sources of evidence. Despite the precise mosaic of hybrid zones identified in southern African genets, the environmental factors that shape patterns of distribution of hybrids remain unclear. Nevertheless, in the light of our range reassessment, it appears that seasonality of precipitation and periods of annual frost may play stringent roles in the distribution of genets. The complementarity of our results based on morphology and molecules is regarded as encouraging for the further development of integrative approaches in order to better understand the complex phenomena that underlie hybridization processes. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 86, 11,33. [source] |