Hybrid Membranes (hybrid + membrane)

Distribution by Scientific Domains


Selected Abstracts


Water/Ethanol Selectivity of New Organic-Inorganic Hybrid Membranes Fabricated from Poly(vinyl alcohol) and an Oligosilane

MACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 7 2007
Tadashi Uragami
Abstract To control the swelling of PVA membranes, mixtures of PVA and an inorganic oligosilane were prepared using sol-gel reactions to yield new PVA/oligosilane hybrid membranes. In the separation of an ethanol/water azeotropic mixture during pervaporation, the effect of the oligosilane content on the water/ethanol selectivity of PVA/oligosilane hybrid membranes was investigated. The water/ethanol selectivity of PVA/oligosilane hybrid membranes was higher than that of PVA membranes, but the water/ethanol selectivity of hybrid membranes decreased with increasing oligosilane content. In order to increase the water/ethanol selectivity, PVA/oligosilane hybrid membranes were annealed. The water/ethanol selectivity of annealed PVA/oligosilane hybrid membranes was greater than un-annealed hybrid membranes, and significantly governed by the oligosilane content, which could be attributed to both sorption and diffusion selectivities. The relationship between the structure of un-annealed and annealed PVA/oligosilane hybrid membranes along with permeation and separation characteristics of an ethanol/water azeotropic mixture during pervaporation are discussed in detail. [source]


Stability Enhancement of All-Solid-State H+ ISEs with Cross-Linked Silicon-Urethane Matrices

ELECTROANALYSIS, Issue 8 2005
Nak-Hyun Kwon
Abstract An all-solid-state hydrogen-ion-selective electrode (ASHISE) was fabricated using the polymer hybrid membrane. Polymer membranes composed of Tecoflex polyurethane (TPU), polyvinyl chloride (PVC), silicon rubber (SR), and additives (KTpClPB, DOA, and TDDA) were cast on a carbon rod. The TPU/SR hybrid membrane exhibited a longer lifetime and a higher sensitivity in the sensing of the H+ ion compared to conventional TPU/PVC and PVC/SR hybrid membranes. Moreover, the addition of SiCl4 to TPU-based matrices enhanced the potentiometric response and ISE stability, due to the chemical bonding between Si and CO in urethane, in which the cross-linking configuration was confirmed by DSC, FT-IR, and XPS experiments. TPU/SR membranes containing SiCl4 were rendered more stable and showed a pH response over a wide range (i.e., pH,2,11.5) with the slope of 60±2,mV/pH for more than four months. The ASHISE exhibited a small interfering potential variation in the wide range of the salt concentration (from 1.0×10,6,M up to 0.1,M). The ASHISE showed a result comparable to a commercial clinical blood analyzer. [source]


Original Fuel-Cell Membranes from Crosslinked Terpolymers via a "Sol,gel" Strategy

ADVANCED FUNCTIONAL MATERIALS, Issue 7 2010
Ozlem Sel
Abstract Hybrid organic/inorganic membranes that include a functionalized (-SO3H), interconnected silica network, a non-porogenic organic matrix, and a -SO3H-functionalized terpolymer are synthesized through a sol,gel-based strategy. The use of a novel crosslinkable poly(vinylidene fluoride- ter -perfluoro(4-methyl-3,6-dioxaoct-7-ene sulfonyl fluoride)- ter -vinyltriethoxysilane) (poly(VDF- ter -PFSVE- ter -VTEOS)) terpolymer allows a multiple tuning of the different interfaces to produce original hybrid membranes with improved properties. The synthesized terpolymer and the composite membranes are characterized, and the proton conductivity of a hybrid membrane in the absence of the terpolymer is promising, since 8,mS cm,1 is reached at room temperature, immersed in water, with an experimental ion-exchange-capacity (IECexp) value of 0.4,meq g,1. Furthermore, when the composite membranes contain the interfaced terpolymer, they exhibit both a higher proton conductivity (43,mS cm,1 at 65 °C under 100% relative humidity) and better stability than the standard hybrid membrane, arising from the occurrence of a better interface between the inorganic silica and the poly[(vinylidene fluoride)- co -hexafluoropropylene] (poly(VDF- co -HFP)) copolymer network. Accordingly, the hybrid SiO2 -SO3H/terpolymer/poly(VDF- co -HFP) copolymer membrane has potential use as an electrolyte in a polymer-electrolyte-membrane fuel cell operating at intermediate temperatures. [source]


Stability Enhancement of All-Solid-State H+ ISEs with Cross-Linked Silicon-Urethane Matrices

ELECTROANALYSIS, Issue 8 2005
Nak-Hyun Kwon
Abstract An all-solid-state hydrogen-ion-selective electrode (ASHISE) was fabricated using the polymer hybrid membrane. Polymer membranes composed of Tecoflex polyurethane (TPU), polyvinyl chloride (PVC), silicon rubber (SR), and additives (KTpClPB, DOA, and TDDA) were cast on a carbon rod. The TPU/SR hybrid membrane exhibited a longer lifetime and a higher sensitivity in the sensing of the H+ ion compared to conventional TPU/PVC and PVC/SR hybrid membranes. Moreover, the addition of SiCl4 to TPU-based matrices enhanced the potentiometric response and ISE stability, due to the chemical bonding between Si and CO in urethane, in which the cross-linking configuration was confirmed by DSC, FT-IR, and XPS experiments. TPU/SR membranes containing SiCl4 were rendered more stable and showed a pH response over a wide range (i.e., pH,2,11.5) with the slope of 60±2,mV/pH for more than four months. The ASHISE exhibited a small interfering potential variation in the wide range of the salt concentration (from 1.0×10,6,M up to 0.1,M). The ASHISE showed a result comparable to a commercial clinical blood analyzer. [source]


Original Fuel-Cell Membranes from Crosslinked Terpolymers via a "Sol,gel" Strategy

ADVANCED FUNCTIONAL MATERIALS, Issue 7 2010
Ozlem Sel
Abstract Hybrid organic/inorganic membranes that include a functionalized (-SO3H), interconnected silica network, a non-porogenic organic matrix, and a -SO3H-functionalized terpolymer are synthesized through a sol,gel-based strategy. The use of a novel crosslinkable poly(vinylidene fluoride- ter -perfluoro(4-methyl-3,6-dioxaoct-7-ene sulfonyl fluoride)- ter -vinyltriethoxysilane) (poly(VDF- ter -PFSVE- ter -VTEOS)) terpolymer allows a multiple tuning of the different interfaces to produce original hybrid membranes with improved properties. The synthesized terpolymer and the composite membranes are characterized, and the proton conductivity of a hybrid membrane in the absence of the terpolymer is promising, since 8,mS cm,1 is reached at room temperature, immersed in water, with an experimental ion-exchange-capacity (IECexp) value of 0.4,meq g,1. Furthermore, when the composite membranes contain the interfaced terpolymer, they exhibit both a higher proton conductivity (43,mS cm,1 at 65 °C under 100% relative humidity) and better stability than the standard hybrid membrane, arising from the occurrence of a better interface between the inorganic silica and the poly[(vinylidene fluoride)- co -hexafluoropropylene] (poly(VDF- co -HFP)) copolymer network. Accordingly, the hybrid SiO2 -SO3H/terpolymer/poly(VDF- co -HFP) copolymer membrane has potential use as an electrolyte in a polymer-electrolyte-membrane fuel cell operating at intermediate temperatures. [source]


One-Pot Synthesis of Functional Helicoidal Hybrid Organic,Inorganic Nanofibers with Periodically Organized Mesoporosity

ADVANCED FUNCTIONAL MATERIALS, Issue 18 2009
Frédéric Rambaud
Abstract The one-pot synthesis and properties of multifunctional hybrid mesoporous organosilica fibers with helical shapes are described. These hybrid mesoporous fibers are prepared without chiral elements and functionalized with a large variety of organic R functions (R,=,alkylthiols, phenylsulfonates, alkylphosphonates, dansyl, aminopropyl, fluoroalkyl, etc.). The resulting nanomaterials are thoroughly characterized by a variety of techniques. The use of a synergetic combination of achiral molecules as co-directing structuring agents, a surfactant, and an organofunctional silica precursor R-Si(OR)3 allows, via carefully tuning of the main synthesis parameters and processing conditions, to control the shape, which is the anisotropic factor, of the hybrid nanofibers. The functionalization of the hybrid materials with fluorescent molecules (dansyl) and gold nanoparticles opens possibilities for sensor and catalytic applications, respectively. Moreover, these hybrid nanofibers can be easily transferred in organic solvents or in a "green" solvent such as water to make stable colloidal dispersions. This tunable functionality of nanofibers also allows their transferability into a variety of polymeric hosts (PVDF, PVBu, and PVP) allowing the formation of functional homogeneous nanocomposite hybrid membranes. [source]


Effect of the preparation conditions on the permeation of ultrahigh-molecular-weight polyethylene/silicon dioxide hybrid membranes

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2010
Nana Li
Abstract Porous ultrahigh-molecular-weight polyethylene/SiO2 membranes were prepared by thermally induced phase separation (TIPS) with white mineral oil as the diluent and SiO2 as an additive. Influential factors, including extraction method, SiO2 content, and cooling rate, were investigated. The results suggest that the both porosity and pure water flux of the membranes by extraction of the solvent naphtha in the tension state with alcohol were the best among our research. With increasing SiO2 content, the porosity, pure water flux, and pore diameter increased. However, with excessive SiO2 content, defects formed easily. Moreover, SiO2 improved the pressure resistance of the membranes. The cooling rate directly effected the crystal structure. A slow cooling rate was good for crystal growth and the integration of the diluent. Therefore, the porosity, pure water flux, and bubble-point pore diameter increased with decreasing cooling rate. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]


Poly(vinyl alcohol),polyacrylamide blends with cesium salts of heteropolyacid as a polymer electrolyte for direct methanol fuel cell applications

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2010
M. Helen
Abstract A class of inorganic,organic hybrid membranes with low methanol permeability characteristics for possible direct methanol fuel cell (DMFC) applications was architected, formulated, and fabricated through the blending of poly(vinyl alcohol) (PVA) and polyacrylamide (PAM) followed by crosslinking with glutaraldehyde (Glu). Cesium salts of different heteropolyacids, including phosphomolybdic acid (PMA), phosphotungstic acid (PWA), and silicotungstic acid (SWA), were incorporated into the polymer network to form corresponding hybrid membrane materials, namely, PVA,PAM,CsPMA,Glu, PVA,PAM,CsPWA,Glu, and PVA,PAM,CsSWA,Glu, respectively (where "Cs" together with a heteropolyacid abbreviation indicates the cesium salt of that acid). All the three hybrid polymer membranes fabricated exhibited excellent swelling, thermal, oxidative, and additive stability properties with desired proton conductivities in the range 10,2 S/cm at 50% relative humidity. A dense network formation was achieved through the blending of PVA and PAM and by crosslinking with Glu, which led to an order of magnitude decrease in the methanol permeability compared to the state-of-the-art commercial Nafion 115 membrane. The hybrid membrane containing CsSWA exhibited a very low methanol permeability (1.4 × 10,8 cm2/s) compared to other membranes containing cesium salt of heteropolyacids such as PMA and PWA. The feasibility of these hybrid membranes as proton-conducting electrolytes in DMFC was investigated, and the preliminary results were compared with those of Nafion 115. The results illustrate the attractive features and suitability of the fabricated hybrid membranes as an electrolyte for DMFC applications. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]


Pervaporation characteristics and structure of poly(vinyl alcohol)/poly(ethylene glycol)/tetraethoxysilane hybrid membranes

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2007
Li Yi Ye
Abstract Poly(vinyl alcohol) (PVA) blended with poly(ethylene glycol) (PEG) was crosslinked with tetraethoxysilane (TEOS) to prepare organic,inorganic PVA/PEG/TEOS hybrid membranes. The membranes were then used for the dehydration of ethanol by pervaporation (PV). The physicochemical structure of the hybrid membranes was studied with Fourier transform infrared spectra (FT-IR), wide-angle X-ray diffraction WXRD, and scanning electron microscopy (SEM). PVA and PEG were crosslinked with TEOS, and the crosslinking density increased with increases in the TEOS content, annealing temperature, and time. The water permselectivity of the hybrid membranes increased with increasing annealing temperature or time; however, the permeation fluxes decreased at the same time. SEM pictures showed that phase separation took place in the hybrid membranes when the TEOS content was greater than 15 wt %. The water permselectivity increased with the addition of TEOS and reached the maximum at 10 wt % TEOS. The water permselectivity decreased, whereas the permeation flux increased, with an increase in the feed water content or feed temperature. The hybrid membrane that was annealed at 130°C for 12 h exhibited high permselectivity with a separation factor of 300 and a permeation flux of 0.046 kg m,2 h,1 in PV of 15 wt % water in ethanol. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007 [source]


Water/Ethanol Selectivity of New Organic-Inorganic Hybrid Membranes Fabricated from Poly(vinyl alcohol) and an Oligosilane

MACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 7 2007
Tadashi Uragami
Abstract To control the swelling of PVA membranes, mixtures of PVA and an inorganic oligosilane were prepared using sol-gel reactions to yield new PVA/oligosilane hybrid membranes. In the separation of an ethanol/water azeotropic mixture during pervaporation, the effect of the oligosilane content on the water/ethanol selectivity of PVA/oligosilane hybrid membranes was investigated. The water/ethanol selectivity of PVA/oligosilane hybrid membranes was higher than that of PVA membranes, but the water/ethanol selectivity of hybrid membranes decreased with increasing oligosilane content. In order to increase the water/ethanol selectivity, PVA/oligosilane hybrid membranes were annealed. The water/ethanol selectivity of annealed PVA/oligosilane hybrid membranes was greater than un-annealed hybrid membranes, and significantly governed by the oligosilane content, which could be attributed to both sorption and diffusion selectivities. The relationship between the structure of un-annealed and annealed PVA/oligosilane hybrid membranes along with permeation and separation characteristics of an ethanol/water azeotropic mixture during pervaporation are discussed in detail. [source]


Organic,inorganic hybrid membranes prepared from the sol,gel process of poly(butyleneadipate- co -terephthalate) and TiO2

POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 8 2009
Chien-Hong Lin
Abstract Organic,inorganic hybrids based on poly(butyleneadipate- co -terephthalate)/titanium dioxide (PBAT/TiO2) hybrid membranes were prepared via a sol,gel process. The PBAT/TiO2 hybrid membranes were prepared for various PBAT/TiO2 ratios. The resulting hybrids were characterized with a morphological structure, hydrophilicity, biodegradability, and thermal properties. The results showed that macrovoids underwent a transition into a sponge-like membrane structure with the addition of TiO2. After sol,gel transition, a strong interaction between the inorganic network and polymeric chains led to an increase in glass transition temperature (Tg), thermal degrading temperature, and hydrophilicity, and hence a higher biodegradability. According to X-ray diffraction measurements of the crystal structure of the hybrid, the presence of TiO2 did not change the crystal structure of PBAT. TiO2 networks are uniformly dispersed into the PBAT matrix and no aggregation of TiO2 networks in the hybrid membranes was observed through the small angle X-ray scattering measurements. Thus, the sol,gel process of PBAT and TiO2 can be used to prepare a hybrid with higher application temperature and faster biodegradation rate. Copyright © 2008 John Wiley & Sons, Ltd. [source]