Home About us Contact | |||
Hybrid Block Copolymers (hybrid + block_copolymer)
Selected AbstractsAdvances in the Synthesis and Characterization of Polypeptide-Based Hybrid Block CopolymersMACROMOLECULAR SYMPOSIA, Issue 1 2004Ivaylo Dimitrov Abstract Linear polystyrene- block -poly(Z-L-lysine) copolymers with a very narrow molecular weight distribution (polydispersity index < 1.03) could be obtained via the ring-opening polymerization of Z-L-lysine- N -carboxyanhydride using ,-(primary amino hydrochloride)-polystyrenes as macroinitiators in N,N -dimethylformamide as the solvent at 40-80 °C. The block copolymer samples were analyzed by means of NMR, size exclusion chromatography, and analytical ultracentrifugation. [source] A general strategy for highly efficient nanoparticle dispersing agents based on hybrid dendritic linear block copolymersJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 5 2009Robert Vestberg Abstract A modular approach to the synthesis of a library of hybrid dendritic-linear copolymers was developed based on RAFT polymerization from monodisperse dendritic macroRAFT agents. By accurately controlling the molecular weight of the linear block, generation number of the dendrimer and the nature of the dendritic chains ends, the performance of these hybrid block copolymers as dispersing agents was optimized for a range of nanoparticles. For titanium dioxide nanoparticles, dispersion in a poly(methyl methacrylate) matrix was maximized with a second generation dendrimer containing four carboxylic acid end groups, and the quality of dispersion was observed to be superior to commercial dispersing agents for TiO2. This approach also allowed novel hybrid dendritic-linear dispersing agents to be prepared for the dispersion of Au and CdSe nanoparticles based on disulphide and phosphine oxide end groups, respectively. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1237,1258, 2009 [source] Biological,synthetic hybrid block copolymers: Combining the best from two worldsJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 1 2005Harm-Anton Klok Abstract Although biopolymers and synthetic polymers share many common features, each of these two classes of materials is also characterized by a distinct and very specific set of advantages and disadvantages. Combining biopolymer elements with synthetic polymers into a single macromolecular conjugate is an interesting strategy for synergetically merging the properties of the individual components and overcoming some of their limitations. This article focuses on a special class of biological,synthetic hybrids that are obtained by site-selective conjugation of a protein or peptide and a synthetic polymer. The first part of the article gives an overview of the different liquid-phase and solid-phase techniques that have been developed for the synthesis of well-defined, that is, site-selectively conjugated, synthetic polymer,protein hybrids. In the second part, the properties and potential applications of these materials are discussed. The conjugation of biological and synthetic macromolecules allows the modulation of protein binding and recognition properties and is a powerful strategy for mediating the self-assembly of synthetic polymers. Synthetic polymer,protein hybrids are already used as medicines and show significant promise for bioanalytical applications and bioseparations. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1,17, 2005 [source] Electroactive Linear,Hyperbranched Block Copolymers Based on Linear Poly(ferrocenylsilane)s and Hyperbranched Poly(carbosilane)sCHEMISTRY - A EUROPEAN JOURNAL, Issue 36 2009Frederik Wurm Dipl.-Chem. Abstract A convenient two-step protocol is presented for synthesis of linear-hyperbranched diblock copolymers consisting of a linear, organometallic poly(ferrocenylsilane) (PFS) block and hyperbranched poly(carbosilane) (hbPCS) segments. Linear PFS diblock copolymers were synthesized through photolytic ring-opening polymerization of dimethyl[1]silaferrocenophane as the first block and methylvinyl[1]silaferrocenophane as the second. These block copolymers served as polyfunctional cores in a subsequent hydrosilylation polyaddition of different silane-based AB2 monomers. Three AB2 monomers (methyldiallylsilane; methyldiundecenylsilane, and ferrocenyldiallylsilane) were investigated; they introduced structural diversity to the hyperbranched block and showed variable reactivity for the hydrosilylation reaction. In the case with the additional ferrocene moiety in the ferrocenyldiallylsilane monomer, an electroactive hyperbranched block was generated. No slow monomer addition was necessary for molecular-weight control of the hyperbranching polyaddition, as the core had much higher functionality and reactivity than the carbosilane monomers. Different block ratios were targeted and hybrid block copolymers with narrow polydispersity (<1.2) were obtained. All the resulting polymers were investigated and characterized by size exclusion chromatography, NMR spectroscopy, cyclic voltammetry, and TEM, and exhibited strongly anisotropic aggregation. [source] |