Hyaline Cartilage (hyaline + cartilage)

Distribution by Scientific Domains


Selected Abstracts


Influence of interleukin-1, and hyaluronan on proteoglycan release from equine navicular hyaline cartilage and fibrocartilage

JOURNAL OF VETERINARY PHARMACOLOGY & THERAPEUTICS, Issue 2 2000
Frean
Proteoglycan (PG) release, in response to recombinant human interleukin-1, (rh-IL-1,), was measured in cartilage explants obtained from the equine distal sesamoid bone (navicular bone). Fibrocartilage from the surface of the navicular bone apposing the deep digital flexor tendon and hyaline cartilage from the surface of the navicular bone articulating with the middle phalanx were labelled with 35SO4. Hyaline cartilage from the distal metacarpus was used as a control tissue. Following radiolabel incorporation, the three cartilage types were treated with rh-IL-1, (100 U/mL) in the presence of hyaluronan (0.2, 2, 20, 200 and 2000 ,g/mL). rh-IL-1,-Induced PG release was measured by scintillation assay of PG-bound radiolabel. Increases in PG release of 94% (P < 0.01), 101% (P < 0.05) and 122% (P < 0.05), in response to rh-IL-1,, were noted in fibrocartilage, navicular hyaline cartilage and metacarpal hyaline cartilage, respectively. Hyaluronan (0.2 ,g/mL) significantly reduced rh-IL-1,-induced PG release in metacarpal hyaline cartilage (P < 0.01). In fibrocartilage and navicular hyaline cartilage, hyaluronan did not reduce PG release and at some concentrations appeared to increase PG release, although this was not statistically significant. These experiments show that (i) fibrocartilage and hyaline cartilage of the navicular bone release PGs in response to rh-IL-1,, and (ii) hyaluronan does not prevent rh-IL-1,-induced breakdown of navicular bone cartilage. [source]


The Elusive Path to Cartilage Regeneration

ADVANCED MATERIALS, Issue 32-33 2009
Ernst B. Hunziker
Abstract Numerous attempts have been made to develop an efficacious strategy for the repair of articular cartilage. These endeavors have been undaunted, if not spurred, by the challenge of the task and by the largely disappointing outcomes in animal models. Of the strategies that have been lately applied in a clinical setting, the autologous-chondrocyte-transplantation technique is the most notorious example. This methodology, which was prematurely launched on the clinical scene, was greeted with enthusiasm and has been widely adopted. However, a recent prospective and randomized clinical trial has revealed the approach to confer no advantage over conventional microfracturing. Why is the repair of articular cartilage such a seemingly intractable problem? The root of the evil undoubtedly lies in the tissue's poor intrinsic healing capacity. But the failure of investigators to tackle the biological stumbling blocks systematically rather than empirically is hardly a less inauspicious circumstance. Moreover, it is a common misbelief that the formation of hyaline cartilage per se suffices, whereas to be durable and functionally competent, the tissue must be fully mature. An appreciation of this necessity, coupled with a thorough understanding of the postnatal development of articular cartilage, would help to steer investigators clear of biological cul-de-sacs. [source]


Expression of extracellular matrix molecules typical of articular cartilage in the human scapholunate interosseous ligament

JOURNAL OF ANATOMY, Issue 6 2006
S. Milz
Abstract The scapholunate interosseous ligament (SLIL) connects the scaphoid and lunate bones and plays a crucial role in carpal kinematics. Its rupture leads to carpal instability and impairment of radiocarpal joint function. As the ligament is one of the first structures affected in rheumatoid arthritis, we conducted an immunohistochemical study of cadaveric tissue to determine whether it contains known autoantigens for rheumatoid arthritis. We immunolabelled the ligament from one hand in 12 cadavers with monoclonal antibodies directed against a wide range of extracellular matrix (ECM) molecules associated with both fibrous and cartilaginous tissues. The labelling profile has also enabled us to comment on how the molecular composition of the ligament relates to its mechanical function. All regions of the ligament labelled for types I, III and VI collagens, chondroitin 4 and 6 sulphates, keratan sulphate, dermatan sulphate, versican, tenascin and cartilage oligomeric matrix protein (COMP). However, both entheses labelled strongly for type II collagen, aggrecan and link protein and were distinctly fibrocartilaginous. In some regions, the ligament attached to bone via a region of hyaline cartilage that was continuous with articular cartilage. Labelling for cartilage molecules in the midsubstance was most evident dorsally. We conclude that the SLIL has an ECM which is typical of other highly fibrocartilaginous ligaments that experience both tensile load and shear. The presence of aggrecan, link protein, COMP and type II collagen could explain why the ligament may be a target for autoantigenic destruction in some forms of rheumatoid arthritis. [source]


Rotating three-dimensional dynamic culture of adult human bone marrow-derived cells for tissue engineering of hyaline cartilage

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 4 2009
Shinsuke Sakai
Abstract The method of constructing cartilage tissue from bone marrow-derived cells in vitro is considered a valuable technique for hyaline cartilage regenerative medicine. Using a rotating wall vessel (RWV) bioreactor developed in a NASA space experiment, we attempted to efficiently construct hyaline cartilage tissue from human bone marrow-derived cells without using a scaffold. Bone marrow aspirates were obtained from the iliac crest of nine patients during orthopedic operation. After their proliferation in monolayer culture, the adherent cells were cultured in the RWV bioreactor with chondrogenic medium for 2 weeks. Cells from the same source were cultured in pellet culture as controls. Histological and immunohistological evaluations (collagen type I and II) and quantification of glycosaminoglycan were performed on formed tissues and compared. The engineered constructs obtained using the RWV bioreactor showed strong features of hyaline cartilage in terms of their morphology as determined by histological and immunohistological evaluations. The glycosaminoglycan contents per µg DNA of the tissues were 10.01,±,3.49 µg/µg DNA in the case of the RWV bioreactor and 6.27,±,3.41 µg/µg DNA in the case of the pellet culture, and their difference was significant. The RWV bioreactor could provide an excellent environment for three-dimensional cartilage tissue architecture that can promote the chondrogenic differentiation of adult human bone marrow-derived cells. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27: 517,521, 2009 [source]


Hyaluronan-based polymers in the treatment of osteochondral defects

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 5 2000
Luis A. Solchaga
Articular cartilage in adults has limited ability for self-repair. Some methods devised to augment the natural healing response stimulate some regeneration, but the repair is often incomplete and lacks durability. Hyaluronan-based polymers were tested for their ability to enhance the natural healing response. It is hypothesized that hyaluronan-based polymers recreate an embryonic-like milieu where host progenitor cells can regenerate the damaged articular surface and underlying bone. Osteochondral defects were made on the femoral condyles of 4-month-old rabbits and were left empty or filled with hyaluronan-based polymers. The polymers tested were ACP sponge, made of crosslinked hyaluronan, and HYAFF-11 sponge, made of benzylated hyaluronan. The rabbits were killed 4 and 12 weeks after surgery, and the condyles were processed for histology. All 12-week defects were scored with a 29-point scale, and the scores were compared with a Kruskall-Wallis analysis of variance on ranks. Untreated defects filled with bone tissue up to or beyond the tidemark, and the noncalcified surface layer varied from fibrous to hyaline-like tissue. Four weeks after surgery, defects treated with ACP exhibited bone filling to the level of the tidemark and the surface layer was composed of hyaline-like cartilage well integrated with the adjacent cartilage. At 12 weeks, the specimens had bone beyond the tidemark that was covered with a thin layer of hyaline cartilage. Four weeks after surgery, defects treated with HYAFF-11 contained a rim of chondrogenic cells at the interface of the implant and the host tissue. In general, the 12-week defects exhibited good bone fill and the surface was mainly hyaline cartilage. Treated defects received significantly higher scores than untreated defects (p < 0.05), and ACP-treated defects scored significantly higher than HYAFF-11-treated defects (p < 0.05). The introduction of these hyaluronan-based polymers into defects provides an appropriate scaffolding and favorable microen-vironment for the reparative process. Further work is required to fully assess the long-term outcome of defects treated with these polymers. [source]


Influence of interleukin-1, and hyaluronan on proteoglycan release from equine navicular hyaline cartilage and fibrocartilage

JOURNAL OF VETERINARY PHARMACOLOGY & THERAPEUTICS, Issue 2 2000
Frean
Proteoglycan (PG) release, in response to recombinant human interleukin-1, (rh-IL-1,), was measured in cartilage explants obtained from the equine distal sesamoid bone (navicular bone). Fibrocartilage from the surface of the navicular bone apposing the deep digital flexor tendon and hyaline cartilage from the surface of the navicular bone articulating with the middle phalanx were labelled with 35SO4. Hyaline cartilage from the distal metacarpus was used as a control tissue. Following radiolabel incorporation, the three cartilage types were treated with rh-IL-1, (100 U/mL) in the presence of hyaluronan (0.2, 2, 20, 200 and 2000 ,g/mL). rh-IL-1,-Induced PG release was measured by scintillation assay of PG-bound radiolabel. Increases in PG release of 94% (P < 0.01), 101% (P < 0.05) and 122% (P < 0.05), in response to rh-IL-1,, were noted in fibrocartilage, navicular hyaline cartilage and metacarpal hyaline cartilage, respectively. Hyaluronan (0.2 ,g/mL) significantly reduced rh-IL-1,-induced PG release in metacarpal hyaline cartilage (P < 0.01). In fibrocartilage and navicular hyaline cartilage, hyaluronan did not reduce PG release and at some concentrations appeared to increase PG release, although this was not statistically significant. These experiments show that (i) fibrocartilage and hyaline cartilage of the navicular bone release PGs in response to rh-IL-1,, and (ii) hyaluronan does not prevent rh-IL-1,-induced breakdown of navicular bone cartilage. [source]


Intercalary Elements, Treefrogs, and the Early Differentiation of a Complex System in the Neobatrachia

THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 12 2007
Adriana S. Manzano
Abstract Intercalary elements are additional skeletal structures of digits of many anuran amphibians. Twelve terminal clades in the neobatrachian lineage of frogs have intercalary elements revealing it is a homoplastic character with five to seven gains and two to four losses along a consensus phylogeny of the Neobatrachia. We analyzed anatomical variation of intercalary elements, related structures (distal phalanges, tendons, and muscles), and articulations of digits of 45 anuran species, representing eight suprageneric terminal taxa. The intercalary elements are integrated in a complex system that is probably related to different types of movements, which are produced by a similar set of muscles and tendons with limited variation among the studied taxa. Species in the clades Hyloides and Ranoides show distinctive patterns of morphostructural features in their intercalary elements that are usually wedge-shaped and composed of hyaline cartilage in Ranoides, and biconcave and composed of embryonic cartilage in Hyloides. Features derived from the typical hyloid condition may only be interpreted in some Hylidae (Pseudis and Lysapsus) and Centrolenidae. In Ranoides, the described features of the intercalary elements are found in all taxa examined with the exception of Leptopelis, which have an intercalary element similar to the other Ranoides but formed by connective tissue. Several features are shared by all taxa having intercalary elements: (1) the intercalary elements differ from the phalanges by lacking terminal epiphyses, (2) they are present in hands and feet, and (3) they appear in all digits. This finding suggests that the genetic basis for presence of intercalary elements may be homologous in all these taxa and may have evolved only once early in neobatrachian history. Anat Rec, 2007. © 2007 Wiley-Liss, Inc. [source]


Accessory joints between basiocciput and atlas/axis in the median plane

CLINICAL ANATOMY, Issue 8 2005
M. von Lüdinghausen
Abstract To explore the many osseous irregularities that are found in the area between the basiocciput, the anterior arch of the atlas and the tip of the dens axis we studied 99 cadaver specimens using magnetic resonance tomography (MRT), computed tomography (CT), median saw-cut sections, and histological sections. Additionally, "dry" specimens of the skull (n = 110), atlas (n = 56), and axis (n = 33) were investigated. In the median plane, the dry and cadaver specimens exhibited osteoarthritis-related osseous outgrowths and osteophytes of the articular surfaces of the median atlanto-axial joint (n = 63), and the presence of congenitally developed free ossicles (n = 22) and of third occipital condyles (n = 3). The largest osteophytes (giant osteophytes) (n = 4) of the anterior arch of the atlas formed osseous contact zones with the basiocciput that were visible histologically as real joints and were designated accessory median atlanto-occipital joints. The third occipital condyles also formed osseous contact zones, visible histologically as real joints, with the anterior arch of the atlas or with the tip of the dens, and were designated accessory atlanto-occipital or occipito-odontoid joints. Frequent free ossicles, incorporated into the accessory joint, were found by histological examination to be covered with hyaline cartilage. Clin. Anat. 18:558,571, 2005. © 2005 Wiley-Liss, Inc. [source]