Home About us Contact | |||
Human Umbilical Vascular Endothelial Cells (human + umbilical_vascular_endothelial_cell)
Selected AbstractsVaccination with xenogeneic tumor endothelial proteins isolated in situ inhibits tumor angiogenesis and spontaneous metastasisINTERNATIONAL JOURNAL OF CANCER, Issue 1 2009Wang Zhang Abstract Angiogenesis is critical for tumor growth and metastasis. Tumor tissues induce the expression of angiogenesis-associated proteins on endothelial surface that can be targeted for tumor immunotherapy. In our study, the rat tumor endothelial proteins (EP) were isolated in situvia biotinylation of tumor vascular endothelial luminal surface followed by streptavidin affinity chromatography. The isolated tumor EP contained numerous up-regulated angiogenesis-associated endothelial proteins. The administration of these tumor EP as a vaccine to mice reduced the microvessel density in subcutaneous primary LLC tumors, delayed spontaneous LLC tumor metastasis and prolonged post-surgery life span. T lymphocytes from tumor EP-vaccinated mice lysed human umbilical vascular endothelial cells, but not tumor cells in vitro, in a dose-dependent manner. Furthermore, adoptive transfer of antitumor EP antibodies in vivo targeted to tumor endothelium and inhibited spontaneous LLC tumor metastasis. This study provides a successful preclinical exploration of the active immunotherapy for tumor by targeting tumor angiogenesis. © 2009 UICC [source] Inhibition of telomerase in the endothelial cells disrupts tumor angiogenesis in glioblastoma xenograftsINTERNATIONAL JOURNAL OF CANCER, Issue 6 2008Maria Laura Falchetti Abstract Tumor angiogenesis is a complex process that involves a series of interactions between tumor cells and endothelial cells (ECs). In vitro, glioblastoma multiforme (GBM) cells are known to induce an increase in proliferation, migration and tube formation by the ECs. We have previously shown that in human GBM specimens the proliferating ECs of the tumor vasculature express the catalytic component of telomerase, hTERT, and that telomerase can be upregulated in human ECs by exposing these cells to GBM in vitro. Here, we developed a controlled in vivo assay of tumor angiogenesis in which primary human umbilical vascular endothelial cells (HUVECs) were subcutaneously grafted with or without human GBM cells in immunocompromised mice as Matrigel implants. We found that primary HUVECs did not survive in Matrigel implants, and that telomerase upregulation had little effect on HUVEC survival. In the presence of GBM cells, however, the grafted HUVECs not only survived in Matrigel implants but developed tubule structures that integrated with murine microvessels. Telomerase upregulation in HUVECs enhanced such effect. More importantly, inhibition of telomerase in HUVECs completely abolished tubule formation and greatly reduced survival of these cells in the tumor xenografts. Our data demonstrate that telomerase upregulation by the ECs is a key requisite for GBM tumor angiogenesis. © 2007 Wiley-Liss, Inc. [source] Inhibition of human vascular endothelial cells proliferation by terbinafineINTERNATIONAL JOURNAL OF CANCER, Issue 1 2004Pei-Yin Ho Abstract We have demonstrated previously that terbinafine (TB), an oral antifungal agent used in the treatment of superficial mycosis, suppresses proliferation of various cultured human cancer cells in vitro and in vivo by inhibiting DNA synthesis and activating apoptosis. In our study, we further demonstrated that TB at a range of concentrations (0,120 ,M) dose-dependently decreased cell number in cultured human umbilical vascular endothelial cells (HUVEC). Terbinafine was not cytotoxic at a concentration of 120 ,M, indicating that it may have an inhibitory effect on the cell proliferation in HUVEC. The TB-induced inhibition of cell growth rate is reversible. [3H]thymidine incorporation revealed that TB reduced the [3H]thymidine incorporation into HUVEC during the S-phase of the cell-cycle. Western blot analysis demonstrated that the protein levels of cyclin A, but not cyclins B, D1, D3, E, CDK2 and CDK4, decreased after TB treatment. The TB-induced cell-cycle arrest in HUVEC occurred when the cyclin-dependent kinase 2 (CDK2) activity was inhibited just as the protein level of p21 was increased and cyclin A was decreased. Pretreatment of HUVEC with a p21 specific antisense oligonucleotide reversed the TB-induced inhibition of [3H]thymidine incorporation. Taken together, these results suggest an involvement of the p21-associated signaling pathway in the TB-induced antiproliferation in HUVEC. Capillary-like tube formation and chick embryo chorioallantoic membrane (CAM) assays further demonstrated the anti-angiogenic effect of TB. These findings demonstrate for the first time that TB can inhibit the angiogenesis. © 2004 Wiley-Liss, Inc. [source] Low-dose metronomic chemotherapy with cisplatin: can it suppress angiogenesis in H22 hepatocarcinoma cells?INTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, Issue 1 2010Fang-Zhen Shen Summary Low-dose chemotherapy drugs can suppress tumours by restraining tumour vessel growth and preventing the repair of damaged vascular endothelial cells. Cisplatin is a broad-spectrum, cell cycle-non-specific drug, but has serious side effects if used at high doses. There have been few reports on the anti-angiogenic effects of low-dose cisplatin and hence the effect of low-dose metronomic (LDM) chemotherapy on the proliferation and neovascularization of H22 hepatocarcinoma cells is discussed in this research. The influence of LDM chemotherapy with cisplatin on human umbilical vascular endothelial cells (HUVECs) and proliferation of the HepG2 human hepatocarcinoma cell line were measured using MTT assays. The LDM group was treated with cisplatin 0.6 mg/kg/day; the control group with saline 0.2 ml; the maximum tolerated dose (MTD) group with cisplatin 9 mg/kg/day. Vascular endothelial growth factor (VEGF) and matrix metallopeptidase 2 (MMP-2) were detected using immunohistochemical staining. A chicken chorio-allantoic membrane (CAM) model was used to check the inhibitory effect of LDM chemotherapy with cisplatin on neovascularization in vivo. Low-dose cisplatin inhibited HUVEC proliferation in a dose- and time-dependent manner, but was ineffective in inhibiting HepG2 cell proliferation. Tumour growth was delayed in mice receiving LDM cisplatin, without apparent body weight loss, compared with mice that received MTD cisplatin. Microvessel density and expression of VEGF and MMP-2 were much lower in mice receiving LDM cisplatin than in the control and MTD groups. Continuous low-dose cisplatin suppressed CAM angiogenesis in vivo. LDM chemotherapy with cisplatin can inhibit the growth of blood vessel endothelial cells in vitro and shows anti-angiogenic ability in vivo. [source] The role of eosinophil major basic protein in angiogenesisALLERGY, Issue 3 2009I. Puxeddu Background:, Eosinophil-derived major basic protein (MBP) plays an active role in allergic inflammation and tissue remodelling. However, its role in angiogenesis has not been established as yet. Therefore our objective was to investigate whether MBP exhibits any direct pro-angiogenic effects. Methods:, Rat aortic endothelial cells and human umbilical vascular endothelial cells were cultured with different concentrations of MBP and their viability (Trypan blue exclusion test), proliferation (thymidine incorporation) and capillary-like structure formation (matrigel assay) were investigated in vitro. The angiogenic activity of MBP was then tested in vivo using the chick chorio allantoic membrane (CAM) assay. Results:, Subcytotoxic concentrations of MBP induce endothelial cell proliferation and enhance the pro-mitogenic effect of vascular endothelial growth factor (VEGF), but do not affect their VEGF release. MBP promotes capillarogenesis by endothelial cells seeded on matrigel and sprouting formation in the CAM assay. Furthermore, we have shown that the pro-angiogenic effect of MBP is not due to its cationic charge since stimulation of the CAMs with the synthetic polycation, poly- l -arginine does not induce any angiogenic effects. Conclusions:, These data demonstrate that MBP has pro-angiogenic effects in vitro and in vivo, providing a novel mechanism whereby MBP can participate in tissue inflammation and remodelling in atopic diseases. [source] Antivascular effects of TZT-1027 (Soblidotin) on murine Colon26 adenocarcinomaCANCER SCIENCE, Issue 12 2006Junichi Watanabe We investigated the ability of TZT-1027 (Soblidotin), a novel antimicrotubule agent, to induce antivascular effects, because most vascular targeting agents that selectively disrupt tumor vasculature also inhibit tubulin polymerization. Treatment with 10,7 g/mL TZT-1027 rapidly disrupted the microtubule cytoskeleton in human umbilical vascular endothelial cells (HUVEC), and significantly enhanced vascular permeability in HUVEC monolayers. In addition, single intravenous administration of 2 mg/kg TZT-1027 to mice bearing Colon26 tumors significantly reduced tumor perfusion and caused extravascular leakage of erythrocytes 1 h after administration. Subsequently, thrombus formation with deposition of fibrin and tumor necrosis was observed 3 and 24 h after administration, respectively. These results strongly suggest that TZT-1027 possesses antivascular effects. TZT-1027 induced apoptosis not only in HUVEC but also in C26 cancer cells (cell line of Colon26 solid tumor) in vitro, suggesting it exerts direct cytotoxicity against tumor cells in addition to its antivascular effects. A single intravenous administration of 1, 2 and 4 mg/kg TZT-1027 significantly prolonged the survival of mice with advanced-stage Colon26 tumors in a dose-dependent manner. Furthermore, TZT-1027 itself less markedly enhanced the permeability of normal vessels, but was additive with vascular endothelial growth factor, indicating the possibility that TZT-1027 selectively exerts its activity on tumor vessels. In summary, these results suggest that TZT-1027 exerts both an indirect antivascular effect and a direct cytotoxic effect, resulting in strong antitumor activity against advanced-stage tumors, and that TZT-1027 may be useful clinically for treating solid tumors. (Cancer Sci 2006; 97: 1410,1416) [source] |