Home About us Contact | |||
Human Sequence (human + sequence)
Selected AbstractsOligophrenin-1, a Rho GTPase-activating protein (RhoGAP) involved in X-linked mental retardation, is expressed in the enteric nervous systemTHE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 2 2003Junhua Xiao Abstract Oligophrenin-1 is a RhoGTPase-activating protein (RhoGAP) that is involved in the regulation of shape changes in dendritic spines, and outgrowth of axons and dendrites in the brain. These changes in neuronal morphology are central to the mechanisms of plasticity, learning, and memory. Although the enteric nervous system also exhibits long-term changes in neuronal function, the expression and involvement of oligophrenin-1 has not previously been investigated. We show by RT-PCR analysis that oligophrenin-1 mRNA is expressed in the myenteric plexus (MP) of the guinea pig ileum. Sequencing of RT-PCR products showed that guinea pig oligophrenin-1 mRNA is 98% and 87% homologous to human and mouse oligophrenin-1, respectively, except that a 42 bp sequence is absent from the guinea pig mRNA. This 42 bp sequence codes for a sequence of 14 amino acids located near the carboxy-terminal end of the RhoGAP domain in the human sequence. An antibody that recognizes human oligophrenin-1 identified a 91 kDa protein band in rat and mouse brain lysates and in guinea pig sciatic nerve, and a 36 kDa protein band in both purified enteric ganglion cell and brain lysate from guinea pig. Oligophrenin-1 is localized specifically to neurons and varicose axons in the MPs and submucosal plexuses (SMPs) of the guinea pig and rat, but is not detectable in glial cells, smooth muscle, or other cell types. These findings indicate that oligophrenin-1 is expressed in the enteric nervous system, where it may regulate morphological changes in axons and dendrites, and thus modulate neuronal connectivity. Anat Rec Part A 273A:671,676, 2003. © 2003 Wiley-Liss, Inc. [source] Rearranged gene order between pig and human in a quantitative trait loci region on SSC3ANIMAL GENETICS, Issue 4 2006M. R. Mousel Summary A quantitative trait locus (QTL) for ovulation rate on chromosome 3 that peaks at 36 cM has been identified in a Meishan-White composite resource population with an additive effect of 2.2 corpora lutea. As part of an effort to identify the responsible gene(s), typing of additional genes on the INRA-University of Minnesota porcine radiation hybrid (IMpRH) map of SSC3 and comparative analysis of gene order was conducted. We placed 52 known genes and expressed sequence tags, two BAC-end sequences and one microsatellite (SB42) on a framework map that fills gaps on previous RH maps. Data were analysed for two-point and multipoint linkage with the IMpRH mapping tool and were submitted to the IMpRH database (http://imprh.toulouse.inra.fr/). Gene order was confirmed for 42 loci residing in the QTL region (spanning c. 17 Mb of human sequence) by using the high-resolution IMpRH2 panel. Carthagène (http://www.inra.fr/internet/departments/MIA/T/CarthaGene) was used to estimate multipoint marker distance and order using all public markers on SSC3 in the IMpRH database and those typed in this study. For the high-resolution map, only data for markers typed in both panels were used. Comparative analysis of human and porcine maps identified conservation of gene order for SSC3q and multiple blocks of conserved segments for SSC3p, which included six distinct segments of HSA7 and two segments of HSA16. The results of this study allow significant refinement of the SSC3p region that contains an ovulation rate QTL. [source] Genomic structure and gene order of swine chromosome 7q1.1,q1.2ANIMAL GENETICS, Issue 1 2006M. Tanaka Summary To clarify the structure of the porcine genomic region that contains quantitative trait loci (QTL) related to fat, we constructed a bacterial artificial chromosome (BAC) contig of the region from DST to SRPK1 on porcine chromosome 7 and performed low-redundancy ,skim' shotgun sequencing of the clones that composed a minimum tiling path of the contig. This analysis revealed that the gene order from VPS52 to SRPK1 is conserved between human and swine and that comparison with the human sequence identified a rearrangement in the swine genome at the proximal end of VPS52. Analysis of the nucleotide sequences of three BAC clones that included the rearrangement point demonstrated that COL21A1 and DST, which were not present in the corresponding human region, were located adjacent to the rearrangement point. These results provide useful information about the genomic region containing QTL for fat in pigs and help to clarify the structure of the so-called ,extended-class II' region distal to the porcine major histocompatibility complex class II region. [source] Expression of the Genes Encoding the Vasopressin-Activated Calcium-Mobilizing Receptor and the Dual Angiotensin II/Vasopressin Receptor in the Rat Central Nervous SystemJOURNAL OF NEUROENDOCRINOLOGY, Issue 7 2000Hurbin The distributions of two newly discovered receptors, the vasopressin-activated calcium-mobilizing receptor (VACM-1) and the dual angiotensin II/vasopressin receptor (AII/AVP), in the central nervous system (CNS) of the rat were determined using reverse transcriptase-polymerase chain reaction and in situ hybridization. The sequence of the rat VACM-1 cDNA was determined and found very homologous to the rabbit and human sequences. Both VACM-1 and AII/AVP receptor genes were widely expressed in the brain, but differed according to the cell type studied. Glial cells were very faintly labelled. The epithelial cells of the choroid plexuses, the ependymal cells and the pia mater were all labelled. Both genes were most active in neurones throughout the CNS. VACM-1 and AII/AVP receptors were detected in neurones previously shown to possess V1a and V1b vasopressin receptors, and/or the AT1 and AT2 angiotensin II receptors in many brain areas. This was the case for the magnocellular neurones of the supraoptic and paraventricular nuclei of the hypothalamus. We suggest that the VACM-1 and AII/AVP receptors may account for the V2 -like responses to vasopressin by these neurones which lack a genuine V2 vasopressin receptor. [source] |