Human RPE Cells (human + rpe_cell)

Distribution by Scientific Domains


Selected Abstracts


Expression of GITR ligand abrogates immunosuppressive function of ocular tissue and differentially modulates inflammatory cytokines and chemokines

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 8 2006
Sankaranarayana
Abstract The glucocorticoid-induced TNF-related receptor ligand (GITRL) was previously shown to be constitutively expressed at low levels in human eye, including retinal pigment epithelial (RPE) cells. By expressing enhanced yellow fluorescent protein-tagged human GITRL in human RPE cells, we investigated the significance of expression of GITRL on human ocular tissue. Confocal immunofluorescence microscopy and flow cytometry confirmed the surface expression of GITRL on RPE cells. However, a soluble form of GITRL was also detected. Remarkably, expression of GITRL on the RPE cells abrogated RPE-mediated immunosuppression of CD3+ T cells, implicated as a possible mechanism for ocular immune privilege. This abrogation of immunosuppression by GITRL-RPE was dependent on GITR-GITRL interaction and could not be mimicked by anti-CD28 antibody. Analysis of cytokine profiles revealed high level of TGF-beta during the immunosuppression by RPE cells while expression of GITRL abrogated the RPE cell-induced TGF-beta secretion. Expression of GITRL also stimulates secretion of an array of proinflammatory cytokines/chemokines from T cells. GITR-GITRL interaction provides a unique proinflammatory costimulation that may signal through a different pathway than that of CD28-B7 costimulation. This study implicated that GITRL could be a potential candidate for regulation of the ocular immune privilege and the balance between immune privilege and inflammation. [source]


Crosstalk between Hsp70 molecular chaperone, lysosomes and proteasomes in autophagy-mediated proteolysis in human retinal pigment epithelial cells

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 9b 2009
Tuomas Ryhänen
Abstract The pathogenesis of age-related macular degeneration involves chronic oxidative stress, impaired degradation of membranous discs shed from photoreceptor outer segments and accumulation of lysosomal lipofuscin in retinal pigment epithelial (RPE) cells. It has been estimated that a major part of cellular proteolysis occurs in proteasomes, but the importance of proteasomes and the other proteolytic pathways including autophagy in RPE cells is poorly understood. Prior to proteolysis, heat shock proteins (Hsps), agents that function as molecular chaperones, attempt to refold misfolded proteins and thus prevent the accumulation of cytoplasmic protein aggregates. In the present study, the roles of the Hsp70 molecular chaperone and proteasomal and lysosomal proteolytic pathways were evaluated in human RPE cells (ARPE-19). The Hsp70 and ubiquitin protein levels and localization were analysed by Western blotting and immunofluorescense. Confocal and transmission electron microscopy were used to detect cellular organelles and to evaluate the morphological changes. Hsp70 levels were modulated using RNA interference and overexpression techniques. Cell viability was measured by colorimetric assay. The proteasome inhibitor MG-132 evoked the accumulation of perinuclear aggregates positive for Hsp70, ubiquitin-protein conjugates and the lysosomal membrane protein LAMP-2. Interestingly, the hsp70 mRNA depletion significantly increased cell death in conjunction with proteasome inhibition. We found that the accumulation of lysosomes was reversible: a cessation of proteasome inhibition led to clearance of the deposits via a mechanism believed to include autophagy. The molecular chaperone Hsp70, proteasomes and autophagy have an important regulatory role in the protein turnover of human RPE cells and may thus open new avenues for understanding degenerative processes in retinal cells. [source]


Somatostatin receptor activation (sst1,sst5) differentially influences human retinal pigment epithelium cell viability

ACTA OPHTHALMOLOGICA, Issue 6 2010
Thekla Papadaki
Abstract. Purpose:, To investigate the differential effects of somatostatin and its receptors (sst1,5) on the viability of cultured human retinal pigment epithelium (hRPE) cells. Methods:, MTT [3 (4, 5-dimethylthiazol-2yl)-2, 5 diphenyltetrazolium bromide], APO PercentageTM and trypan blue assays were performed to assess the mechanisms via which somatostatin (10,10,10,4 m) and selective receptor (sst1,5) ligands (10,12,10,4 m) affect cell viability. The effect of orthovanadate (phosphatase inhibitor, 10,7,10,5 m) on somatostatin's (10,5 m) actions was examined, and western blot analysis was employed to determine the presence of ssts and phosphotyrosine phosphatase SHP-1 in human RPE cells. Results:, Somatostatin and selective ligands for the five somatostatin receptor subtypes (sst1,5) decreased cell viability in a concentration-dependent manner. The observed decrease in cell number was partly because of apoptosis via the activation of sst1 and sst5 receptors. Activation of sst2, sst3 and sst4 receptors led to inhibition of cell growth that did not involve apoptosis, but rather antiproliferative actions. SHP-1 was found in the human RPE cells and sodium orthovanadate reversed somatostatin's actions. Conclusions:, This study provides new information regarding the involvement of ssts in human RPE cell viability and suggests that a pathway involving the phosphotyrosine phosphatase may mediate somatostatin's actions. [source]


2133: p62/sequestosome 1 as a regulator of proteasome inhibitor-induced autophagy in human retinal pigment epithelial cells

ACTA OPHTHALMOLOGICA, Issue 2010
K KAARNIRANTA
Purpose The pathogenesis of age-related macular degeneration involves impaired protein degradation in retinal pigment epithelial (RPE) cells. The ubiquitin-proteasome pathway and the lysosomal pathway including autophagy are the major proteolytic systems in eukaryotic cells. Prior to proteolysis, heat shock proteins (HSPs) attempt to refold stress ,induced misfolded proteins and thus prevent the accumulation of cytoplasmic protein aggregates. The functional roles of p62 and HSP70 were evaluated in conjunction with protesome inhibitor -induced autophagy in human RPE cells (ARPE-19). Methods The p62, HSP70 and ubiquitin protein levels and localization were analyzed by Western blotting and immunofluorescense. Confocal and transmission electron microscopy were used to detect cellular organelles and to evaluate the morphological changes. The p62 and HSP70 levels were modulated using RNA interference and overexpression techniques. Cell viability was measured by colorimetric assay. Results Proteasome inhibition evoked the accumulation of p62 and HSP70 that strongly co-localized with each other in perinuclear aggregates. The p62 accumulation was time and concentration dependent after MG-132 proteasome inhibitor loading. Interestingly, autophagy induction was p62 and Hsp70 independent. In addition, the p62 silencing decreased the ubiquitination level of the perinuclear aggregates. Recently we showed that hsp70 mRNA depletion increased cell death in ARPE-19 cells. Here we now demonstrate that p62 mRNA silencing has similar effects on cellular viability. Conclusion The p62 and HSP70 are central molecules in the regulation of protein turnover in human retinal pigment epithelial cells in proteasome inhibitor- induced autophagy. [source]