Home About us Contact | |||
Human Retina (human + retina)
Selected AbstractsNew Cells for the Human RetinaGERMAN RESEARCH, Issue 2-3 2002Gabriele Thumann PD Dr. Age-dependent damage to the retina can lead to blindness. It may be possible to restore vision by transplanting cells from the iris onto the retina [source] Mutations of the RDX gene cause nonsyndromic hearing loss at the DFNB24 locus,,HUMAN MUTATION, Issue 5 2007Shahid Y. Khan Abstract Ezrin, radixin, and moesin are paralogous proteins that make up the ERM family and function as cross-linkers between integral membrane proteins and actin filaments of the cytoskeleton. In the mouse, a null allele of Rdx encoding radixin is associated with hearing loss as a result of the degeneration of inner ear hair cells as well as with hyperbilirubinemia due to hepatocyte dysfunction. Two mutant alleles of RDX [c.1732G>A (p.D578N) and c.1404_1405insG (p.A469fsX487)] segregating in two consanguineous Pakistani families are associated with neurosensory hearing loss. Both of these mutant alleles are predicted to affect the actin-binding motif of radixin. Sequence analysis of RDX in the DNA samples from the original DFNB24 family revealed a c.463C>T transition substitution that is predicted to truncate the protein in the FERM domain (F for 4.1, E for ezrin, R for radixin, and M for moesin) (p.Q155X). We also report a more complete gene and protein structure of RDX, including four additional exons and five new isoforms of RDX that are expressed in human retina and inner ear. Further, high-resolution confocal microscopy in mouse inner ear demonstrates that radixin is expressed along the length of stereocilia of hair cells from both the organ of Corti and the vestibular system. Hum Mutat 28(5), 417,423, 2007. Published 2007 Wiley-Liss, Inc. [source] Towards metabolic mapping of the human retinaMICROSCOPY RESEARCH AND TECHNIQUE, Issue 5 2007D. Schweitzer Abstract Functional alterations are first signs of a starting pathological process. A device that measures parameter for the characterization of the metabolism at the human eye-ground would be a helpful tool for early diagnostics in stages when alterations are yet reversible. Measurements of blood flow and of oxygen saturation are necessary but not sufficient. The new technique of auto-fluorescence lifetime measurement (FLIM) opens in combination with selected excitation and emission ranges the possibility for metabolic mapping. FLIM not only adds an additional discrimination parameter to distinguish different fluorophores but also resolves different quenching states of the same fluorophore. Because of its high sensitivity and high temporal resolution, its capability to resolve multi-exponential decay functions, and its easy combination with laser scanner ophthalmoscopy, multi-dimensional time-correlated single photon counting was used for fundus imaging. An optimized set up for in vivo lifetime measurements at the human eye-ground will be explained. In this, the fundus fluorescence is excited at 446 or 468 nm and the time-resolved autofluorescence is detected in two spectral ranges between 510 and 560 nm as well as between 560 and 700 nm simultaneously. Exciting the fundus at 446 nm, several fluorescence maxima of lifetime t1 were detected between 100 and 220 ps in lifetime histograms of 40° fundus images. In contrast, excitation at 468 nm results in a single maximum of lifetime t1 = 190 ± 16 ps. Several fundus layers contribute to the fluorescence intensity in the short-wave emission range 510,560 nm. In contrast, the fluorescence intensity in the long-wave emission range between 560 and 700 nm is dominated by the fluorescence of lipofuscin in the retinal pigment epithelium. Comparing the lateral distribution of parameters of a tri-exponential model function in lifetime images of the fundus with the layered anatomical fundus structure, the shortest component (t1 = 190 ps) originates from the retinal pigment epithelium and the second lifetime (t2 = 1,000 ps) from the neural retina. The lifetime t3 , 5.5 ns might be influenced by the long decay of the fluorescence in the crystalline lens. In vitro analysis of the spectral properties of expected fluorophores under the condition of the living eye lightens the interpretation of in vivo measurements. Taking into account the transmission of the ocular media, the excitation of NADH is unlikely at the fundus. Microsc. Res. Tech., 2007. © 2007 Wiley-Liss, Inc. [source] L- and M-cone input to 12Hz and 30Hz flicker ERGs across the human retinaOPHTHALMIC AND PHYSIOLOGICAL OPTICS, Issue 5 2010N. K. Challa Abstract We recorded L- and M-cone isolating ERGs from human subjects using a silent substitution technique at temporal rates of 12 and 30 Hz. These frequencies isolate the activity of cone-opponent and non-opponent post-receptoral mechanisms, respectively. ERGs were obtained using a sequence of stimuli with different spatial configurations comprising; (1) circular stimuli of different sizes which increased in 10° steps up to 70°diameter, or (2) annular stimuli with a 70° outer diameter but with different sized central ablations from 10° up to 60°. L- and M-cone isolating ERGs were obtained from five colour normal subjects using a DTL fibre electrode. Fourier analysis of the ERGs was performed and we measured the amplitude of the first harmonic of the response. For 12 Hz ERGs the L:M cone response amplitude ratio (L:MERG) was close to unity and remained stable irrespective of the spatial configuration of the stimulus. The maintenance of this balanced ratio points to the existence of cone selective input across the human retina for the L-M cone opponent mechanism. For 30 Hz the L:MERG ratio was greater than unity but varied depending upon which region of the retina was being stimulated. This variation we consider to be a consequence of the global response properties of M-cone ERGs rather than representing a real variation in L:M cone ratios across the retina. [source] Phototoxicity in Human Retinal Pigment Epithelial Cells Promoted by Hypericin, a Component of St. John's Wort,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 3 2007Albert R. Wielgus ABSTRACT St. John's wort (SJW), an over-the-counter antidepressant, contains hypericin, which absorbs light in the UV and visible ranges. In vivo studies have determined that hypericin is phototoxic to skin and our previous in vitro studies with lens tissues have determined that it is potentially phototoxic to the human lens. To determine if hypericin might also be phototoxic to the human retina, we exposed human retinal pigment epithelial (hRPE) cells to 10,7 to 10,5 M hypericin. Fluorescence emission detected from the cells (,ex = 488 nm; ,em = 505 nm) confirmed hypericin uptake by human RPE. Neither hypericin exposure alone nor visible light exposure alone reduced cell viability. However when irradiated with 0.7 J cm,2 of visible light (, > 400 nm) there was loss of cell viability as measured by MTS and lactate dehydrogenase assays. The presence of hypericin in irradiated hRPE cells significantly changed the redox equilibrium of glutathione and a decrease in the activity of glutathione reductase. Increased lipid peroxidation as measured by the thiobarbituric acid reactive substances assay correlated to hypericin concentration in hRPE cells and visible light radiation. Thus, ingested SJW is potentially phototoxic to the retina and could contribute to retinal or early macular degeneration. [source] Profiling of vitreous proteomes from proliferative diabetic retinopathy and nondiabetic patientsPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 22 2007Taeoh Kim Abstract Diabetes can lead to serious microvascular complications like proliferative diabetic retinopathy (PDR), which is the leading cause of blindness in adults. The proteomic changes that occur during PDR cannot be measured in the human retina for ethical reasons, but could be reflected by proteomic changes in vitreous humor. Thus, we considered that comparisons between the proteome profiles of the vitreous humors of PDR and nondiabetic controls could lead to the discovery of novel pathogenic proteins and clinical biomarkers. In this study, the authors used several proteomic methods to comprehensively examine vitreous humor proteomes of PDR patients and nondiabetic controls. These methods included immunoaffinity subtraction (IS)/2-DE/MALDI-MS, nano-LC-MALDI-MS/MS, and nano-LC-ESI-MS/MS. The identified proteins were subjected to the Trans-Proteomic Pipeline validation process. Resultantly, 531 proteins were identified, i.e., 415 and 346 proteins were identified in PDR and nondiabetic control vitreous humor samples, respectively, and of these 531 proteins, 240 were identified for the first time in this study. The PDR vitreous proteome was also found to contain many proteins possibly involved in the pathogenesis of PDR. The proteins described provide the most comprehensive proteome listing in the vitreous humor samples of PDR and nondiabetic control patients. [source] 2224: Oxygenation of the human retinaACTA OPHTHALMOLOGICA, Issue 2010E STEFANSSON Purpose Partial pressure of oxygen in the optic nerve and retina is regulated by the intraocular pressure and systemic blood pressure, the resistance in the blood vessels and oxygen consumption of the tissue. The PO2 is autoregulated and moderate changes in intraocular pressure, blood pressure or tissue oxygen consumption do not affect the retinal and optic nerve oxygen tension. Methods If the intraocular pressure is increased above 40 mmHg or the ocular perfusion pressure decreased below 50 mmHg the autoregulation is overwhelmed and the optic nerve becomes hypoxic. The levels of perfusion pressure that lead to optic nerve hypoxia in the laboratory correspond remarkably well to the levels that increase the risk of glaucomatous optic nerve atrophy in human glaucoma patients. Medical intervention can affect optic nerve PO2. Lowering the intraocular pressure tends to increase the optic nerve PO2, even though this effect may be masked by the autoregulation when the optic nerve PO2 and perfusion pressure is in the normal range. Results Carbonic anhydrase inhibitors increase retinal PO2 through a mechanism of vasodilatation and lowering of the intraocular pressure. Carbonic anhydrase inhibition reduces the removal of CO2 from the tissue and the CO2 accumulation induces vasodilatation resulting in increased blood flow and improved oxygen supply. This effect is inhibited by indomethacin but not other cyclo-oxygenase inhibitors. Conclusion Carbonic anhydrase inhibitors increase retinal blood flow and increase oxygen delivery. Glaucoma drugs and glaucoma surgery lower intraocular pressure, increase ocular perfusion pressure and blood flow. Demand of oxygen by retinal cells may be reduced through apoptosis and tissue atrophy, as well as active destruction of tissue by laser photocoagulation. [source] Neuronal adaptation in the human retina: a study of the single oscillatory response in dark adaptation and mesopic background illuminationACTA OPHTHALMOLOGICA, Issue 7 2007Anna-Lena Lundström Abstract. Purpose:, The single oscillatory response in complete dark adaptation (DA) and the effect of mesopic illumination were studied in order to investigate the behaviour of the neuronal adaptation system as reflected in the oscillatory potentials (OPs) of the electroretinogram (ERG). Methods:, The rapid oscillatory and slow components (a- and b-waves) of single ERGs were simultaneously recorded in nine healthy, young subjects in response to first flash after both DA of 45 mins and light adaptation to a steady background light (BGL) of low mesopic intensity. Results:, Two low-amplitude oscillatory peaks were present in the single response to the first flash recorded in DA. There was no increase in the summed amplitudes of the OPs (SOP) when recorded in the single response to the first flash in mesopic BGL. However, the morphology of the oscillatory response altered. The first OP was reduced and a third oscillatory peak appeared. Conclusions:, We conclude that early, scotopically related OPs may indeed be activated in the single response to the first flash in DA (i.e. without using conditioning flashes). Secondly, on its own, adaptation to mesopic BGL does not seem to trigger enhancement of the overall oscillatory response. The altered single oscillatory response to the first flash apparent in the mesopic BGL comprises a third cone-associated OP and seems to reflect a reorganization of the retinal microcircuitry from a predominantly rod-activated system to one of mixed rod/cone neuronal activity in the inner part of the retina at the level at which individual OPs have their respective origins. [source] 2114: AO adapted to SD-OCTACTA OPHTHALMOLOGICA, Issue 2010W DREXLER Purpose Optical coherence tomography (OCT) has emerged as a leading technique in ophthalmic imaging due to its capability to non-invasively resolve tissue morphology with high sensitivity and high axial resolution. Despite increases in axial resolution, monochromatic ocular aberrations limited the transverse resolution for retinal imaging to ~20 ,m, which is too large for visualization of cellular structures. Adaptive optics (AO) may be used to correct such aberrations, leading to an improvement in image contrast and lateral resolution. Methods A successful combination of ultra-high speed (120,000 depth scans/s), ultra-high resolution optical coherence tomography with adaptive optics and an achromatizing lens for compensation of monochromatic and longitudinal chromatic ocular aberrations, respectively, allows for non-invasive volumetric imaging in normal and pathologic human retinas at cellular resolution. Results The capability of this imaging system is demonstrated through preliminary studies by probing cellular intraretinal structures that have not been accessible so far with in vivo, non-invasive, label-free imaging techniques, including pigment epithelial cells, micro-vasculature of the choriocapillaris, single nerve fibre bundles and collagenous plates of the lamina cribrosa in the optic nerve head. In addition, the volumetric extent of cone loss in two colour-blinds can be quantified for the first time. Conclusion AO OCT might provide opportunities to enhance the understanding of retinal pathogenesis and early diagnosis of retinal diseases. Commercial interest [source] |