Home About us Contact | |||
Human Osteoblastic Cells (human + osteoblastic_cell)
Selected AbstractsAlendronate Interacts With the Inhibitory Effect of 1,25(OH)2D3 on Parathyroid Hormone-Related Protein Expression In Human Osteoblastic Cells,,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 1 2003L Gómez-García Abstract The bisphosphonate alendronate is a potent inhibitor of bone resorption by its direct action on osteoclasts. In addition, there is some data suggesting that alendronate could also inhibit bone resorption indirectly by interacting with osteoblasts. Parathyroid hormone-related protein (PTHrP) produced by osteoblasts and 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] are regulators of bone remodeling, which have interrelated actions in these cells. In this study, we assessed whether alendronate can affect PTHrP expression in the presence or absence of 1,25(OH)2D3 in human primary osteoblastic (hOB) cells from trabecular bone. Cell total RNA was isolated, and semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) was carried out using human PTHrP-specific primers. PTHrP in the hOB cell-conditioned medium was analyzed by a specific immunoradiometric assay. We found that PTHrP mRNA and secreted PTHrP were maximally inhibited by 10,8 -10,6 M of 1,25(OH)2D3 treatment within 8,72 h in hOB cells. Alendronate (10,14 -10,8 M) modified neither PTHrP mRNA nor PTHrP secretion, although it consistently abrogated the decrease in PTHrP production induced by 1,25(OH)2D3 in these cells. On the other hand, alendronate within the same dose range did not affect either the vitamin D receptor (VDR) mRNA or osteocalcin secretion, with or without 1,25(OH)2D3, in hOB cells. The inhibitory effect of alendronate on the 1,25(OH)2D3 -induced decrease in PTHrP in these cells was mimicked by the calcium ionophore A23187 (5 × 10,6 M), while it was eliminated by 5 × 10,5 M of nifedipine. Furthermore, although alendronate alone failed to affect [Ca2+]i in these cells, it stimulated [Ca2+]i after pretreatment of hOB cells with 10,8 M of 1,25(OH)2D3, an effect that was abolished by 5 × 10,5 M of nifedipine. These results show that alendronate disrupts the modulatory effect of 1,25(OH)2D3 on PTHrP production in hOB cells. Our findings indicate that an increase in calcium influx appears to be involved in the mechanism mediating this effect of alendronate. [source] Diamond Seeding and Growth of Hierarchically Structured Films for Tissue Engineering,ADVANCED ENGINEERING MATERIALS, Issue 7 2009Alexander Kromka The importance of using optimized diamond powder suspension for an efficient seeding process is shown to be crucial for the growth of hierarchically structured nanocrystalline diamond (NCD) films. The morphology of freshly adhered human osteoblastic cells (SAOS-2) on such structured NCD films is significantly influenced by the substrate roughness. The hierarchically structured NCD films can thus find application in cell cultivation implants and tissue engineering. [source] Association of a single nucleotide polymorphism in the steroid and xenobiotic receptor (SXR) gene (IVS1-579A/G) with bone mineral densityGERIATRICS & GERONTOLOGY INTERNATIONAL, Issue 2 2007Tomohiko Urano Vitamin K2 plays an important role in the bone metabolism. The steroid and xenobiotic receptor (SXR) as a nuclear receptor activated by vitamin K2 as well as rifampicin could increase bone markers such as alkaline phosphatase in human osteoblastic cells. Thus, the SXR could mediate vitamin K2 signaling pathway in bone cells. Therefore, we analyzed expression of the SXR mRNA in human primary osteoblasts and chondrocytes. We also studied association of a single nucleotide polymorphism (SNP) in the SXR gene with bone mineral density (BMD). Expression levels of the SXR mRNA were analyzed during the culture course of human primary osteoblasts and chondrocytes. Association of a SNP in the SXR gene in intron 1 (IVS1-579A>G) with BMD was examined in 294 healthy postmenopausal Japanese women. The SXR mRNA increased at day 5 and then decreased at day 10 in human primary osteoblasts. Its mRNA gradually increased in human primary chondrocytes until day 10. As an association study of a SNP in the SXR gene (IVS1-579A/G), the subjects without the A allele (GG; n = 47) had significantly higher total BMD than the subjects bearing at least one A allele (AA + AG; n = 247) (Z score ± SD; 0.635 ± 1.031 versus 0.268 ± 1.061; P = 0.0298). The SXR mRNA was expressed and regulated in primary human osteoblasts and chondrocytes. A genetic variation at the SXR gene locus is associated with BMD, suggesting an involvement of the SXR gene in human bone metabolism. [source] Effect of growth hormone on in vitro osteogenesis and gene expression of human osteoblastic cells is donor-age-dependentJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2008Grasiele E. Crippa Abstract It has been demonstrated that the effect of GH on bone tissue is reduced with aging. In this study we tested the hypothesis that the action of GH on osteoblastic cells is donor-age-dependent by investigating the effect of GH on the development of osteoblastic phenotype in cultures of cells from adolescents (13,16 years old), young adults (18,35 years old), and adults (36,49 years old). Osteoblastic cells derived from human alveolar bone were cultured with or without GH for periods of up to 21 days, and parameters of in vitro osteogenesis and gene expression of osteoblastic markers were evaluated. GH increased culture growth, collagen content and alkaline phosphatase (ALP) activity in cultures from adolescents and young adults, whereas non-significant effect was observed in cultures from adults. While GH significantly increased the bone-like formation in cultures from adolescents, a slightly effect was observed in cultures from young adults and no alteration was detected in cultures from adults. Results from real-time PCR demonstrated that GH upregulated ALP, osteocalcin, type I collagen, and Cbfa1 mRNA levels in cultures from adolescents. In addition, cultures from young adults showed higher ALP mRNA expression and the expression of all evaluated genes was not affected by GH in cultures from adults. These results indicate that the GH effect on both in vitro osteogenesis and gene expression of osteoblastic markers is donor-age-dependent, being more pronounced on cultures from adolescents. J. Cell. Biochem. 104: 369,376, 2008. © 2007 Wiley-Liss, Inc. [source] Multilineage mesenchymal differentiation potential of human trabecular bone-derived cellsJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 5 2002Ulrich Nöth Abstract Explant cultures of adult human trabecular bone fragments give rise to osteoblastic cells, that are known to express osteoblast-related genes and mineralize extracellular matrix. These osteoblastic cells have also been shown to undergo adipogenesis in vitro and chondrogenesis in vivo. Here we report the in vitro developmental potential of adult human osteoblastic cells (hOB) derived from explant cultures of collagenase-pretreated trabecular bone fragments. In addition to osteogenic and adipogenic differentiation, these cells are capable of chondrogenic differentiation in vitro in a manner similar to adult human bone marrow-derived mesenchymal progenitor cells. High-density pellet cultures of hOB maintained in chemically defined serum-free medium, supplemented with transforming growth factor-,1, were composed of morphologically distinct, chondrocyte-like cells expressing mRNA transcripts of collagen types II, IX and X, and aggrecan. The cells within the high-density pellet cultures were surrounded by a sulfated prote-oglycan-rich extracellular matrix that immunostained for collagen type II and proteoglycan link protein. Osteogenic differentiation of hOB was verified by an increased number of alkaline phosphatase-positive cells, that expressed osteoblast-related transcripts such as alkaline phosphatase, collagen type I, osteopontin and osteocalcin, and formed mineralized matrix in monolayer cultures treated with ascorbate, ,-glycerophosphate, and bone morphogenetic protein-2. Adipogenic differentiation of hOB was determined by the appearance of intracellular lipid droplets, and expression of adipocyte-specific genes, such as lipoprotein lipase and peroxisome proliferator-activated receptor ,2, in monolayer cultures treated with dexamethasone, indomethacin, insulin and 3-isobutyl-l-methylxanthine. Taken together, these results show that cells derived from collagenase-treated adult human trabecular bone fragments have the potential to differentiate into multiple mesenchymal lineages in vitro, indicating their developmental plasticity and suggesting their mesenchymal progenitor nature. © 2002 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved. [source] Oncostatin M,induced CCL2 transcription in osteoblastic cells is mediated by multiple levels of STAT-1 and STAT-3 signaling: An implication for the pathogenesis of arthritisARTHRITIS & RHEUMATISM, Issue 5 2009Sang-Heng Kok Objective To examine the roles of STATs 1 and 3 in CCL2 production in human osteoblastic cells and their influences on arthritis development. Methods The expression of CCL2 in primary human osteoblasts and U2OS human osteoblastic cells was examined by Northern blotting and enzyme-linked immunosorbent assay. The roles of STAT-1/3 and c-Fos were assessed using short hairpin RNAs (shRNA) to silence their functions. Serine phosphorylation of STATs was assessed by Western blotting. Promoter activities of c-Fos and CCL2 were assessed by chloramphenicol acetyltransferase and luciferase assays, respectively. Interactions of STAT-1, STAT-3, and c-Fos with DNA were evaluated by electrophoretic mobility shift assay (EMSA) and immunoprecipitation. The effect of the JAK inhibitor AG-490 on collagen-induced arthritis (CIA) in rats was examined using immunohistochemistry. Results Oncostatin M (OSM) stimulated CCL2 expression in primary human osteoblasts and U2OS cells. In U2OS cells, STAT-1 and STAT-3 were involved in OSM-stimulated CCL2 expression, and both the phosphatidylinositol 3-kinase/Akt and MEK/ERK pathways were implicated in the activation of these STATs. STAT-1 and STAT-3 modulated the expression of c-Fos and directly transactivated the CCL2 promoter. Moreover, EMSA showed formation of a DNA,protein complex containing STAT-1, STAT-3, and interestingly, c-Fos. Immunoprecipitation confirmed the binding between c-Fos and STAT-1/3. Reporter assay revealed synergistic attenuation of CCL2 promoter activity by shRNA targeting of STAT-1, STAT-3, and c-Fos. AG-490 suppressed OSM-stimulated activation of STAT-1/3 and synthesis of CCL2 in vitro and diminished the severity of CIA and the number of CCL2-synthesizing osteoblasts in vivo. Conclusion These findings show that multiple levels of STAT-1/3 signaling modulate OSM-stimulated CCL2 expression in human osteoblastic cells. Clinically, this pathway may be related to the pathogenesis of arthritis. [source] Epigallocatechin-3-gallate diminishes CCL2 expression in human osteoblastic cells via up-regulation of phosphatidylinositol 3-Kinase/Akt/Raf-1 interaction: A potential therapeutic benefit for arthritisARTHRITIS & RHEUMATISM, Issue 10 2008Sze-Kwan Lin Objective To assess the effects of epigallocatechin-3-gallate (EGCG) on oncostatin M (OSM),induced CCL2 synthesis and the associated signaling pathways in human osteoblastic cells. The therapeutic effect of EGCG on collagen-induced arthritis (CIA) in rats was also studied. Methods CCL2 and c-Fos messenger RNA expression was analyzed by Northern blotting. The modulating effects of EGCG on the activation of Raf-1, Akt, and phosphatidylinositol 3-kinase (PI 3-kinase) were examined by coimmunoprecipitation, Western blotting, and PI 3-kinase activity assay. Interactions between c-Fos and CCL2 promoter were evaluated by electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assay. The effect of EGCG on CIA in rats was examined clinically and immunohistochemically. Results EGCG inhibited OSM-stimulated CCL2 expression in primary human osteoblasts and MG-63 cells. In MG-63 cells, EGCG alleviated the OSM-induced phosphorylation of Raf-1 at Ser338 but restored the dephosphorylation of Raf-1 at Ser259. EGCG increased the activity of PI 3-kinase, the level of phosphorylated Akt (Ser473), and binding between Raf-1 and active Akt. EMSA and ChIP assay revealed that EGCG attenuated activator protein 1 (AP-1),CCL2 promoter interaction, possibly by reducing c-Fos synthesis. Codistribution of CD68+ macrophages and CCL2+ osteoblasts in osteolytic areas was obvious in the CIA model. Administration of EGCG markedly diminished the severity of CIA, macrophage infiltration, and the amount of CCL2-synthesizing osteoblasts. Conclusion By stimulating PI 3-kinase activity, EGCG promoted Akt/Raf-1 crosstalk, resulting in decreased AP-1 binding to CCL2 promoter, and finally reduced CCL2 production in osteoblasts. EGCG alleviated the severity of CIA, probably by suppressing CCL2 synthesis in osteoblasts to diminish macrophage infiltration. Our data support the therapeutic potential of EGCG on arthritis. [source] Adhesion pattern and growth of primary human osteoblastic cells on five commercially available titanium surfacesCLINICAL ORAL IMPLANTS RESEARCH, Issue 7 2010Giovanni Passeri Abstract Objective: The aim of this study is to analyze the morphology and proliferation of human osteoblastic cells in vitro on five commercially available titanium surfaces. Materials and methods: Human primary cells of the osteoblastic lineage were obtained from bone explants. The cells were plated on polished (T1), machined (T2), sand-blasted/acid-etched (T3), sand-blasted/acid-etched, modified with hydrogen peroxide rinse (T4), and plasma-sprayed titanium (T5) disks. Cell morphology was studied after 6, 24, 72 h, 7 and 14 days of culture by scanning electron microscopy. The formation and distribution of focal adhesions was investigated by immunocytochemical staining at 3, 6 and 24 h. Cell growth was measured by an MTT assay after 3, 7 and 9 days of culture. Moreover, the production of osteocalcin and osteoprotegerin (OPG) was evaluated in the supernatants by ELISA. Results: Morphological analysis revealed that substrate topography profoundly affected cells' shape and their anchoring structures. Large lamellipodia were formed on polished and machined surfaces, while thin filopodia were more frequently observed on T3 and T4 samples. Moreover, cells formed stronger focal adhesions on T3 and T4 surfaces, and cell proliferation was higher on rough surfaces. Osteocalcin production was higher on the T4 surface, whereas OPG steadily increased on every surface. Conclusions: Taken together, these data show that all the surfaces allowed cell attachment, adhesion and proliferation, but T4 and T5 surfaces appeared to be a better substrate for the adhesion, proliferation and differentiation of cells of the osteoblastic lineage. To cite this article: Passeri G, Cacchioli A, Ravanetti F, Galli C, Elezi E, Macaluso GM. Adhesion pattern and growth of primary human osteoblastic cells on five commercially available titanium surfaces. Clin. Oral Impl. Res. 21, 2010; 756,765. doi: 10.1111/j.1600-0501.2009.01906.x [source] |