Human NTDs (human + ntd)

Distribution by Scientific Domains


Selected Abstracts


The folate metabolic enzyme ALDH1L1 is restricted to the midline of the early CNS, suggesting a role in human neural tube defects

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 2 2007
Todd E. Anthony
Abstract Folate supplementation prevents up to 70% of human neural tube defects (NTDs), although the precise cellular and metabolic sites of action remain undefined. One possibility is that folate modulates the function of metabolic enzymes expressed in cellular populations involved in neural tube closure. Here we show that the folate metabolic enzyme ALDH1L1 is cell-specifically expressed in PAX3-negative radial glia at the midline of the neural tube during early murine embryogenesis. Midline restriction is not a general property of this branch of folate metabolism, as MTHFD1 displays broad and apparently ubiquitous expression throughout the neural tube. Consistent with previous work showing antiproliferative effects in vitro, ALDH1L1 upregulation during central nervous system (CNS) development correlates with reduced proliferation and most midline ALDH1L1+ cells are quiescent. These data provide the first evidence for localized differences in folate metabolism within the early neural tube and suggest that folate might modulate proliferation via effects on midline Aldh1l1+ cells. To begin addressing its role in neurulation, we analyzed a microdeletion mouse strain lacking Aldh1l1 and observed neither increased failure of neural tube closure nor detectable proliferation defects. Although these results indicate that loss-of-function Aldh1l1 mutations do not impair these processes in mice, the specific midline expression of ALDH1L1 and its ability to dominantly suppress proliferation in a folate responsive manner may suggest that mutations contributing to disease are gain-of-function, rather than loss-of-function. Moreover, a role for loss-of-function mutations in human NTDs remains possible, as Mthfr null mice do not develop NTDs even though MTHFR mutations increase human NTD risk. J. Comp. Neurol. 500:368,383, 2007. © 2006 Wiley-Liss, Inc. [source]


The genetic background of the curly tail strain confers susceptibility to folate-deficiency-induced exencephaly

BIRTH DEFECTS RESEARCH, Issue 2 2010
Katie A. Burren
Abstract BACKGROUND: Suboptimal maternal folate status is considered a risk factor for neural tube defects (NTDs). However, the relationship between dietary folate status and risk of NTDs appears complex, as experimentally induced folate deficiency is insufficient to cause NTDs in nonmutant mice. In contrast, folate deficiency can exacerbate the effect of an NTD-causing mutation, as in splotch mice. The purpose of the present study was to determine whether folate deficiency can induce NTDs in mice with a permissive genetic background which do not normally exhibit defects. METHODS: Folate deficiency was induced in curly tail and genetically matched wild-type mice, and we analyzed the effect on maternal folate status, embryonic growth and development, and frequency of NTDs. RESULTS: Folate-deficient diets resulted in reduced maternal blood folate, elevated homocysteine, and a diminished embryonic folate content. Folate deficiency had a deleterious effect on reproductive success, resulting in smaller litter sizes and an increased rate of resorption. Notably, folate deficiency caused a similar-sized, statistically significant increase in the frequency of cranial NTDs among both curly tail (Grhl3 mutant) embryos and background-matched embryos that are wild type for Grhl3. The latter do not exhibit NTDs under normal dietary conditions. Maternal supplementation with myo -inositol reduced the incidence of NTDs in the folate-deficient wild-type strain. CONCLUSIONS: Dietary folate deficiency can induce cranial NTDs in nonmutant mice with a permissive genetic background, a situation that likely parallels gene-nutrient interactions in human NTDs. Our findings suggest that inositol supplementation may ameliorate NTDs resulting from insufficient dietary folate. Birth Defects Research (Part A), 2010. © 2009 Wiley-Liss, Inc. [source]


Mouse mutants with neural tube closure defects and their role in understanding human neural tube defects,

BIRTH DEFECTS RESEARCH, Issue 3 2007
Muriel J. Harris
Abstract BACKGROUND: The number of mouse mutants and strains with neural tube closure defects (NTDs) now exceeds 190, including 155 involving known genes, 33 with unidentified genes, and eight "multifactorial" strains. METHODS: The emerging patterns of mouse NTDs are considered in relation to the unknown genetics of the common human NTDs, anencephaly, and spina bifida aperta. RESULTS: Of the 150 mouse mutants that survive past midgestation, 20% have risk of either exencephaly and spina bifida aperta or both, parallel to the majority of human NTDs, whereas 70% have only exencephaly, 5% have only spina bifida, and 5% have craniorachischisis. The primary defect in most mouse NTDs is failure of neural fold elevation. Most null mutations (>90%) produce syndromes of multiple affected structures with high penetrance in homozygotes, whereas the "multifactorial" strains and several null-mutant heterozygotes and mutants with partial gene function (hypomorphs) have low-penetrance nonsyndromic NTDs, like the majority of human NTDs. The normal functions of the mutated genes are diverse, with clusters in pathways of actin function, apoptosis, and chromatin methylation and structure. The female excess observed in human anencephaly is found in all mouse exencephaly mutants for which gender has been studied. Maternal agents, including folate, methionine, inositol, or alternative commercial diets, have specific preventative effects in eight mutants and strains. CONCLUSIONS: If the human homologs of the mouse NTD mutants contribute to risk of common human NTDs, it seems likely to be in multifactorial combinations of hypomorphs and low-penetrance heterozygotes, as exemplified by mouse digenic mutants and the oligogenic SELH/Bc strain. Birth Defects Research (Part A), 2007. © 2006 Wiley-Liss, Inc. [source]


Integrity of the methylation cycle is essential for mammalian neural tube closure

BIRTH DEFECTS RESEARCH, Issue 7 2006
Louisa P.E. Dunlevy
Abstract BACKGROUND: Closure of the cranial neural tube during embryogenesis is a crucial process in development of the brain. Failure of this event results in the severe neural tube defect (NTD) exencephaly, the developmental forerunner of anencephaly. METHODS: The requirement for methylation cycle function in cranial neural tube closure was tested by treatment of cultured mouse embryos with cycloleucine or ethionine, inhibitors of methionine adenosyl transferase. Embryonic phenotypes were investigated by histological analysis, and immunostaining was performed for markers of proliferation and apoptosis. Methylation cycle intermediates s-adenosylmethionine and s-adenosylhomocysteine were also quantitated by tandem mass spectrometry. RESULTS: Ethionine and cycloleucine treatments significantly reduced the ratio of abundance of s-adenosylmethionine to s-adenosylhomocysteine and are, therefore, predicted to suppress the methylation cycle. Exposure to these inhibitors during the period of cranial neurulation caused a high incidence of exencephaly, in the absence of generalized toxicity, growth retardation, or developmental delay. Reduced neuroepithelial thickness and reduced density of cranial mesenchyme were detected in ethionine-treated but not cycloleucine-treated embryos that developed exencephaly. Reduced mesenchymal density is a potential cause of ethionine-induced exencephaly, although we could not detect a causative alteration in proliferation or apoptosis prior to failure of neural tube closure. CONCLUSIONS: Adequate functioning of the methylation cycle is essential for cranial neural tube closure in the mouse, suggesting that suppression of the methylation cycle could also increase the risk of human NTDs. We hypothesize that inhibition of the methylation cycle causes NTDs due to disruption of crucial reactions involving methylation of DNA, proteins or other biomolecules. Birth Defects Research (Part A) 76:544,552, 2006. © 2006 Wiley-Liss, Inc. [source]


Toward understanding the genetic basis of neural tube defects

CLINICAL GENETICS, Issue 4 2007
Z Kibar
Neural tube defects (NTDs) represent a common group of severe congenital malformations that result from failure of neural tube closure during early development. Their etiology is quite complex involving environmental and genetic factors and their underlying molecular and cellular pathogenic mechanisms remain poorly understood. Animal studies have recently demonstrated an essential role for the planar cell polarity pathway (PCP) in mediating a morphogenetic process called convergent extension during neural tube formation. Alterations in members of this pathway lead to NTDs in vertebrate models, representing novel and exciting candidates for human NTDs. Genetic studies in NTDs have focused mainly on folate-related genes based on the finding that perinatal folic acid supplementation reduces the risk of NTDs by 60,70%. A few variants in these genes have been found to be significantly associated with an increased risk for NTDs. The candidate gene approach investigating genes involved in neurulation has failed to identify major causative genes in the etiology of NTDs. Despite this history of generally negative findings, we are achieving a rapid and impressive progress in understanding the genetic basis of NTDs, based mainly on the powerful tool of animal models. [source]