Human Neocortex (human + neocortex)

Distribution by Scientific Domains


Selected Abstracts


Synaptophysin protein and mRNA expression in the human hippocampal formation from birth to old age,

HIPPOCAMPUS, Issue 8 2006
Sharon L. Eastwood
Abstract In the human neocortex, progressive synaptogenesis in early postnatal life is followed by a decline in synaptic density, then stability from adolescence until middle age. No comparable data are available in the hippocampus. In this study, the integral synaptic vesicle protein synaptophysin, measured immunoautoradiographically, was used as an index of synaptic terminal abundance in the hippocampal formation of 37 subjects from 5 weeks to 86 yr old, divided into 4 age groups (10 infants, 15 adolescents/young adults, 6 adults, and 6 elderly). In all hippocampal subfields, synaptophysin was lowest in infancy, but did not differ significantly between the older age groups, except in dentate gyrus (DG) where the rise was delayed until adulthood. A similar developmental profile was found in the rat hippocampus. We also measured synaptophysin mRNA in the human subjects and found no age-related changes, except in parahippocampal gyrus wherein the mRNA declined from infancy to adolescence, and again in old age. The synaptophysin protein data demonstrate a significant presynaptic component to human postnatal hippocampal development. In so far as synaptophysin abundance reflects synaptic density, the findings support an increase in hippocampal and parahippocampal synapse formation during early childhood, but provide no evidence for adolescent synaptic pruning. The mRNA data indicate that the maturational increases in synaptophysin protein are either translational rather than transcriptional in origin, or else are secondary to mRNA increases in neurons, the cell bodies of which lie outside the hippocampal formation. Published 2006 Wiley-Liss, Inc. [source]


Dynamics of human neocortex that optimizes its stability and flexibility

INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, Issue 9 2006
Walter J. Freeman
The electroencephalogram (EEG) in states of awake, sleep, and seizure in a patient with intractable partial complex seizures was recorded through a 1- × 1-cm microgrid of 64 electrodes on the right inferior temporal gyrus during a week-long neurosurgical evaluation. Comparisons with a normal intracranial EEG were perforce from animals. Analytic phase and amplitude from the Hilbert transform gave the temporal resolution needed to resolve EEG spatiotemporal structure. The rest state revealed multiple overlapping patterns of high-frequency coherent oscillations resembling bubbles in boiling water. Bubble diameters gave estimates of the distances across the cortex over which the cortical oscillations were synchronized. Superimposed on these bubbles were large-sized epochs of phase locking with briefly constant frequency and high amplitude. These coordinated analytic phase differences occurred between short periods of high phase variance. The variance gave evidence for state transitions between transiently stable states with constant phase gradients. In sleep these phase patterns persisted with reduced amplitude, occasionally interrupted by long-lasting (,1 s) epochs with no spatial textures in phase and amplitude despite a large increase in amplitude. Seizures had high amplitude 3/s spikes with steep spatial gradients. Onset occurred after pre-ictal reduction in bubble diameters as evidence for large-scale cortical disintegration preceding loss of stability. © 2006 Wiley Periodicals, Inc. Int J Int Syst 21: 881,901, 2006. [source]


Renewed focus on the developing human neocortex

JOURNAL OF ANATOMY, Issue 4 2010
Gavin Clowry
Abstract Many specifically human psychiatric and neurological conditions have developmental origins. Rodent models are extremely valuable for the investigation of brain development, but cannot provide insight into aspects that are specifically human. The human brain, and particularly the cerebral cortex, has some unique genetic, molecular, cellular and anatomical features, and these need to be further explored. Cortical expansion in human is not just quantitative; there are some novel types of neurons and cytoarchitectonic areas identified by their gene expression, connectivity and functions that do not exist in rodents. Recent research into human brain development has revealed more elaborated neurogenetic compartments, radial and tangential migration, transient cell layers in the subplate, and a greater diversity of early-generated neurons, including predecessor neurons. Recently there has been a renaissance of the study of human brain development because of these unique differences, made possible by the availability of new techniques. This review gives a flavour of the recent studies stemming from this renewed focus on the developing human brain. [source]


Differential inhibitory effects of drugs acting at the noradrenaline and 5-hydroxytryptamine transporters in rat and human neocortical synaptosomes,

BRITISH JOURNAL OF PHARMACOLOGY, Issue 7 2009
M Mantovani
Background and purpose:, Although the amino acid sequences of rat and human 5-hydroxytryptamine (5-HT) and noradrenaline (NA) transporters (i.e. SERT and NET) are highly homologous, species differences exist in the inhibitory effects of drugs acting at these transporters. Therefore, comparison of the potencies of drugs acting at SERT and NET in native human and rat neocortex may serve to more accurately predict their clinical profile. Experimental approach:, Synaptosomes prepared from fresh human and rat neocortical tissues were used for [3H]-5-HT and [3H]-NA saturation and competition uptake experiments. The drugs tested included NA reuptake inhibitors (desipramine, atomoxetine and (S,S)-reboxetine), 5-HT reuptake blockers (citalopram, fluoxetine and fluvoxamine) and dual 5-HT/NA reuptake inhibitors (duloxetine and milnacipran). Key results:, In saturation experiments on synaptosomal [3H]-5-HT and [3H]-NA uptake, the dissociation constants did not indicate species differences although a smaller density of both SERT and NET was observed in human tissues. In competition experiments with the various drugs, marked species differences in their potencies were observed, especially at SERT. The rank order of selectivity ratios (SERT/NET) in human neocortex was as follows: citalopram , duloxetine = fluvoxamine , fluoxetine > milnacipran > desipramine = atomoxetine > (S,S)-reboxetine. Significant species differences in these ratios were observed for duloxetine, atomoxetine and desipramine. Conclusions and implications:, This study provides the first compilation of drug potency at native human neocortical SERT and NET. The significant species differences (viz., human vs. rat) in drug potency suggest that the general use of rodent data should be limited to predict clinical efficacy or profile. [source]


When brains expand: mind and the evolution of cortex

ACTA NEUROPSYCHIATRICA, Issue 3 2007
Matthew T. K. Kirkcaldie
Objective:, To critically examine the relationship between evolutionary and developmental influences on human neocortex and the properties of the conscious mind it creates. Methods:, Using PubMed searches and the bibliographies of several monographs, we selected 50 key works, which offer empirical support for a novel understanding of the organization of the neocortex. Results:, The cognitive gulf between humans and our closest primate relatives has usually been taken as evidence that our brains evolved crucial new mechanisms somehow conferring advanced capacities, particularly in association areas of the neocortex. In this overview of neocortical development and comparative brain morphometry, we propose an alternative view: that an increase in neocortical size, alone, could account for novel and powerful cognitive capabilities. Other than humans' very large brain in relation to the body weight, the morphometric relations between neocortex and all other brain regions show remarkably consistent exponential ratios across the range of primate species, including humans. For an increase in neocortical size to produce new abilities, the developmental mechanisms of neocortex would need to be able to generate an interarchy of functionally diverse cortical domains in the absence of explicit specification, and in this respect, the mammalian neocortex is unique: its relationship to the rest of the nervous system is unusually plastic, allowing great changes in cortical organization to occur in relatively short periods of evolution. The fact that even advanced abilities like self-recognition have arisen in species from different mammalian orders suggests that expansion of the neocortex quite naturally generates new levels of cognitive sophistication. Our cognitive and behavioural sophistication may, therefore, be attributable to these intrinsic mechanisms' ability to generate complex interarchies when the neocortex reaches a sufficient size. Conclusion:, Our analysis offers a parsimonious explanation for key properties of the human mind based on evolutionary influences and developmental processes. This view is perhaps surprising in its simplicity, but offers a fresh perspective on the evolutionary basis of mental complexity. [source]