Human Melanoma Cells (human + melanoma_cell)

Distribution by Scientific Domains

Terms modified by Human Melanoma Cells

  • human melanoma cell line

  • Selected Abstracts


    Quercetin Enhances Melanogenesis By Increasing the Activity and Synthesis of Tyrosinase in Human Melanoma Cells and in Normal Human Melanocytes

    PIGMENT CELL & MELANOMA RESEARCH, Issue 1 2004
    Hidetaka Nagata
    Quercetin (3,3,,4,,5,7-pentahydroxyflavone) is a diphenyl propanoid widely distributed in edible plants. In this study, we examined the effect of quercetin on melanogenesis in human HMVII melanoma cells and in normal human epidermal melanocytes (NHEM) in the absence of ultraviolet radiation. Upon the addition of quercetin to the culture medium, the melanin content in melanoma cells (HMVII) increased remarkably in time- and dose-dependent manners. In addition, quercetin induced melanogenesis in cultured NHEM. As compared with controls, melanin content was increased about sevenfold by treatment with 20 ,M (HMVII) or 1 ,M (NHEM) quercetin for 7 d. Tyrosinase activity was also increased, to 61.8-fold higher than the control. The expression of tyrosinase protein was slightly increased by the addition of quercetin. However, quercetin did not affect the expression of tyrosinase mRNA. Tyrosinase activation by quercetin was blocked by actinomycin-D or by cycloheximide demonstrating that its actions in stimulating melanogenesis may involve both transcriptional and translational events. Tyrosinase activity was increased dramatically whereas the level of melanogenic inhibitor was remarkably decreased following quercetin treatment. Taken together, these results demonstrate that in human melanoma cells and in NHEM, quercetin stimulates melanogenesis by increasing tyrosinase activity and decreasing other factors such as melanogenic inhibitors. [source]


    Loss-of-function variants of the human melanocortin-1 receptor gene in melanoma cells define structural determinants of receptor function

    FEBS JOURNAL, Issue 24 2002
    Jesús Sánchez Más
    The ,-melanocyte-stimulating hormone (,MSH) receptor (MC1R) is a major determinant of mammalian skin and hair pigmentation. Binding of ,MSH to MC1R in human melanocytes stimulates cell proliferation and synthesis of photoprotective eumelanin pigments. Certain MC1R alleles have been associated with increased risk of melanoma. This can be theoretically considered on two grounds. First, gain-of-function mutations may stimulate proliferation, thus promoting dysplastic lesions. Second, and opposite, loss-of-function mutations may decrease eumelanin contents, and impair protection against the carcinogenic effects of UV light, thus predisposing to skin cancers. To test these possibilities, we sequenced the MC1R gene from seven human melanoma cell (HMC) lines and three giant congenital nevus cell (GCNC) cultures. Four HMC lines and two GCNC cultures contained MC1R allelic variants. These were the known loss-of-function Arg142His and Arg151Cys alleles and a new variant, Leu93Arg. Moreover, impaired response to a superpotent ,MSH analog was demonstrated for the cell line carrying the Leu93Arg allele and for a HMC line homozygous for wild-type MC1R. Functional analysis in heterologous cells stably or transiently expressing this variant demonstrated that Leu93Arg is a loss-of-function mutation abolishing agonist binding. These results, together with site-directed mutagenesis of the vicinal Glu94, demonstrate that the MC1R second transmembrane fragment is critical for agonist binding and maintenance of a resting conformation, whereas the second intracellular loop is essential for coupling to the cAMP system. Therefore, loss-of-function, but not activating MC1R mutations are common in HMC. Their study provides important clues to understand MC1R structure-function relationships. [source]


    Ocular Melanoma Metastatic to Skin: The Value of HMB-45 Staining

    DERMATOLOGIC SURGERY, Issue 6 2004
    Robert A. Schwartz MD
    Background: Cutaneous metastatic disease is an important finding that may represent the first sign of systemic cancer, or, if already known, that may change tumor staging and thus dramatically altered therapeutic plans. Although cutaneous metastases are relatively frequent in patients with cutaneous melanoma, they are less so from ocular melanoma. Objective: To demonstrate the value of HMB-45, staining in the detection of ocular melanoma metastatic to skin. Methods: The immunohistochemical stain HMB-45 a monoclonal antibody directed against intact human melanoma cells, was employed on a skin biopsy specimen from a cutaneous tumor. Results: HMB-45 staining was positive in the atypical hyperchromatic cells of the deep dermis. Conclusion: HMB-45 may be of value in the detection of ocular melanoma metastatic to skin. Cutaneous metastatic disease is a somewhat common and extremely important diagnosis. Although cutaneous metastases from cutaneous melanoma are relatively frequent, those from ocular melanomas are less so. Use of histochemical staining, especially the HMB-45 stain, allows confirmation of the diagnosis. [source]


    Adoptive transfer of an anti-MART-127,35 -specific CD8+ T,cell clone leads to immunoselection of human melanoma antigen-loss variants in SCID mice

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 2 2003
    Francesco Lozupone
    Abstract The identification of appropriate mouse models could be useful in carefully evaluating the actual role of the in vivo development of antigen-loss variants during antigen-specific vaccine therapy of human tumors. In this study we investigated the level of efficacy of a MART-1/Melan-A-specific CD8+ T,cell clone against its autologous melanoma in a severe combined immunodeficiency (SCID) mouse model, in which the tumor cells expressed in vivo heterogeneous and suboptimal levels of MART-1. The subcutaneous co-injection of the MART-1/Melan-A-reactive T,cell clone A42 with MART-1/Melan-A+ autologous human melanoma cells into SCID mice caused a total inhibition of tumor growth. However, the systemic treatment with A42 clone lymphocytes resulted inonly 50,60% inhibition of tumor growth, although the T,cell clone targeted the tumors and the MART-1+ cells virtually disappeared from the tumors. This study suggests that an immunotherapybased on the expansion of an antigen-specific T,cell clone generated in vitro is highly efficient in abolishing tumor growth when the target antigen is fully expressed, but leads to in vivoimmunoselection of antigen-loss variants in the presence of suboptimal levels of antigen expression. Furthermore, this work shows that human tumors/SCID mouse models may be useful in evaluating thein vivo efficacy of adoptive immunotherapies. [source]


    CD44 variant isoform v10 is expressed on tumor-infiltrating lymphocytes and mediates hyaluronan-independent heterotypic cell,cell adhesion to melanoma cells

    EXPERIMENTAL DERMATOLOGY, Issue 2 2003
    T. K. Weimann
    Abstract: CD44 is a family of cell-surface receptors on human lymphocytes that act as co-stimulatory molecules leading to the induction of effector functions in T cells. We have analyzed primary cutaneous malignant melanomas with clinical and histologic signs of tumor regression using immunohistochemistry and observed the predominant expression of the CD44 variant isoform v10 on CD3 CD4/CD8 co-expressing tumor-infiltrating lymphocytes (TIL). We further analyzed the role of CD44v10 in adhesion of lymphocytes to human melanoma cells. In contrast to CD44, lymphatic cells, CD44v10+ lymphatic cells strongly bound to cultured human melanoma cells and to frozen tissue samples of melanomas. Antibody blocking studies revealed a hyaluronan-, integrin-, and selectin-independent pathway of adhesion. Furthermore, CD44v10+ lymphatic cells exhibited significantly higher invasiveness in three-dimensional collagen matrices as compared with CD44H+ and CD44-negative lymphocytes. These results indicate that expression of CD44v10 on TIL may mediate adhesion to melanoma cells and result in gain of novel invasive properties. [source]


    Thrombin-mediated impairment of fibroblast growth factor-2 activity

    FEBS JOURNAL, Issue 12 2009
    Pierangela Totta
    Thrombin generation increases in several pathological conditions, including cancer, thromboembolism, diabetes and myeloproliferative syndromes. During tumor development, thrombin levels increase along with several other molecules, including cytokines and angiogenic factors. Under such conditions, it is reasonable to predict that thrombin may recognize new low-affinity substrates that usually are not recognized under low-expression levels conditions. In the present study, we hypothesized that fibroblast growth factor (FGF)-2 may be cleaved by thrombin and that such action may lead to an impairment of its biological activity. The evidence collected in the present study indicates that FGF-2-induced proliferation and chemotaxis/invasion of SK-MEL-110 human melanoma cells were significantly reduced when FGF-2 was pre-incubated with active thrombin. The inhibition of proliferation was not influenced by heparin. Phe-Pro-Arg-chloromethyl ketone, a specific inhibitor of the enzymatic activity of thrombin, abolished the thrombin-induced observed effects. Accordingly, both FGF-2-binding to cell membranes as well as FGF-2-induced extracellular signal-regulated kinase phosphorylation were decreased in the presence of thrombin. Finally, HPLC analyses demonstrated that FGF-2 is cleaved by thrombin at the peptide bond between residues Arg42 and Ile43 of the mature human FGF-2 sequence. The apparent kcat/Km of FGF-2 hydrolysis was 1.1 × 104 m,1·s,1, which is comparable to other known low-affinity thrombin substrates. Taken together, these results demonstrate that thrombin digests FGF-2 at the site Arg42-Ile43 and impairs FGF-2 activity in vitro, indicating that FGF-2 is a novel thrombin substrate. [source]


    Involvement of Cdc42 and Rac small G proteins in invadopodia formation of RPMI7951 cells

    GENES TO CELLS, Issue 12 2003
    Hirokazu Nakahara
    Background:, Invadopodia are membrane protrusions into the extracellular matrix by aggressive tumour cells. These structures are associated with sites of matrix degradation and invasiveness of malignant tumour cells in an in vitro fibronectin degradation/invasion assay. The Rho family small G proteins, consisting of the Rho, Rac and Cdc42 subfamilies, are implicated in various cell functions, such as cell shape change, adhesion, and motility, through reorganization of the actin cytoskeleton. We studied the roles of the Rho family small G proteins in invadopodia formation. Results:, We first demonstrated that invadopodia of RPMI7951 human melanoma cells extended into the matrix substratum on a vertical view using a laser scanning confocal microscope system. We confirmed that invadopodia were rich in actin filaments (F-actin) and visualized clearly with F-actin staining on a vertical view as well as on a horizontal view. We then studied the roles of Rho, Rac, and Cdc42 in invasiveness of the same cell line. In the in vitro fibronectin degradation/invasion assay, a dominant active mutant of Cdc42 enhanced dot-like degradation, whereas a dominant active mutant of Rac enhanced diffuse-type degradation. Furthermore, frabin, a GDP/GTP exchange protein for Cdc42 with F-actin-binding activity, enhanced both dot-like and diffuse-type degradation. However, a dominant active mutant of Rho did not affect the fibronectin degradation. Moreover, inhibition of phosphatidylinositol-3 kinase (PI3K) disrupted the Rac and Cdc42-dependent actin structures and blocked the fibronectin degradation. Conclusion:, These results suggest that Cdc42 and Rac play important roles in fibronectin degradation and invasiveness in a coordinate manner through the frabin-Cdc42/Rac-PI3K signalling pathway. [source]


    Pleiotropic function of ezrin in human metastatic melanomas

    INTERNATIONAL JOURNAL OF CANCER, Issue 12 2009
    Cristina Federici
    Abstract The membrane cytoskeleton cross-linker, ezrin, has recently been depicted as a key regulator in the progression and metastasis of several pediatric tumors. Less defined appears the role of ezrin in human adult tumors, especially melanoma. We therefore addressed ezrin involvement in the metastatic phenotype of human adult metastatic melanoma cells. Our results show that cells resected from melanoma metastatic lesions of patients, display marked metastatic spreading capacity in SCID mice organs. Stable transfection of human melanoma cells with an ezrin deletion mutant comprising only 146 N-terminal aminoacids led to the abolishment of metastatic dissemination. In vitro experiments revealed ezrin direct molecular interactions with molecules related to metastatic functions such as CD44, merlin and Lamp-1, consistent with its participation to the formation of phagocitic vacuoles, vesicular sorting and migration capacities of melanoma cells. Moreover, the ezrin fragment capable of binding to CD44 was shorter than that previously reported, and transfection with the ezrin deletion mutant abrogated plasma membrane Lamp-1 recruitment. This study highlights key involvement of ezrin in a complex machinery, which allows metastatic cancer cells to migrate, invade and survive in very unfavorable conditions. Our in vivo and in vitro data reveal that ezrin is the hub of the metastatic behavior also in human adult tumors. © 2009 UICC [source]


    Cyclosporine A and its non-immunosuppressive derivative NIM811 induce apoptosis of malignant melanoma cells in in vitro and in vivo studies

    INTERNATIONAL JOURNAL OF CANCER, Issue 1 2005
    Iwona Ciechomska
    Abstract Advanced melanoma is a highly malignant tumor with an increasing incidence that has a poor prognosis due to resistance to common therapeutic strategies. We have demonstrated previously that cyclosporine A (CsA) induces apoptosis of rat glioma cells, reactive astrocytes, and fibroblasts. In our present study, we investigated effects of CsA and its nonimmunosuppressive derivative NIM811 on survival of human and murine melanoma cells. We demonstrated that CsA and NIM811 affect survival of human and murine melanoma cells and induce morphological changes, alterations in nuclear morphology and an internucleosomal DNA fragmentation, consistent with an apoptotic type of death. Western blot analysis showed an activation of caspases 9, 7, 3 and PARP cleavage detectable at 24 hr after exposure of human melanoma cells to the drugs. CsA and NIM811 induced a significant increase in subG1 population of murine B16F10 melanoma cells indicative of apoptotic DNA fragmentation. Studies in murine model of melanoma showed that NIM811, but not CsA, retards tumor progression and significantly decreases tumor volume after intratumoral application. Our findings indicate that CsA and its derivatives may be new candidates for the treatment of melanoma patients. © 2005 Wiley-Liss, Inc. [source]


    Inhibition of immunosuppressive effects of melanoma-inhibiting activity (MIA) by antisense techniques

    INTERNATIONAL JOURNAL OF CANCER, Issue 1 2005
    Piotr Jachimczak
    Abstract Melanoma inhibitory activity (MIA) is an 11 kD protein secreted by malignant melanomas. Recent studies revealed an interaction of MIA with epitopes of extracellular matrix proteins including fibronectin. Structural homology of MIA with the binding sites of ,4,1 integrin results in complex interactions of MIA with molecules binding to ,4,1 integrin. As cells of the immune system express ,4,1 integrins (VLA-4), we investigated whether MIA may modulate the function of human leukocytes. Here we describe the effects of MIA on the activation of human PBMCs and auto-/allogeneic lymphokine-activated killer cell (LAK) cytotoxicity in human MIA-negative glioma cell lines and MIA-positive melanoma cell lines in vitro. MIA inhibits PHA- or IL-2-induced human PBMC proliferation in a dose-dependent manner up to 63% (3H-Tdr incorporation) and 59% (cell count), respectively, when added to the cell culture prior to mitogen stimulation. In addition, both autologous (GL and HW) and allogeneic (HTZ-17, HTZ-243 and HTZ-374) antitumor LAK cytotoxicity was reduced by the addition of exogenous rhMIA (500 ng/ml, f.c.). Consequently, endogenous inhibition of MIA expression in human melanoma cells by MIA-specific phosphorothioate antisense oligonucleotides enhanced the autologous LAK-cell activity to the same level as observed in MIA-negative human HMB melanoma cells expressing an MIA-antisense construct. Our results indicate that MIA may contribute to immunosuppression frequently seen in malignant melanomas by inhibiting cellular antitumor immune reactions. Antagonization of MIA activity using antisense techniques may represent a novel therapeutic strategy for treatment of malignant melanomas. [source]


    In vitro and in vivo antitumor effect of 2-methoxyestradiol on human melanoma

    INTERNATIONAL JOURNAL OF CANCER, Issue 5 2004
    Judit Dobos
    Abstract 2-methoxyestradiol (2ME2) is an endogenous metabolite of estradiol with estrogen-receptor-independent antitumor and antiangiogenic activity. We examined the effects of 2ME2 on the cellular proliferation of 8 human melanoma cell lines. We show that 2ME2 inhibited cell proliferation by inducing apoptosis and an arrest in the G2/M phase, and the mechanism of action involved microtubules, mitochondrial damage and caspase activation. In male SCID mice, 2ME2 was effective in reducing primary tumor weight and the number of liver metastases after intrasplenic injection of human melanoma cells. In the metastases, we found a significantly higher rate of apoptotic cells after 2ME2 treatment. These findings on the antitumor effect of 2ME2 in cell culture as well as in an animal model may have implications for designing alternative treatment options for patients with advanced malignant melanoma. © 2004 Wiley-Liss, Inc. [source]


    Kojic acid reduces the cytotoxic effects of sulfur mustard on cultures containing human melanoma cells in vitro

    JOURNAL OF APPLIED TOXICOLOGY, Issue 6 2001
    C. N. Smith
    Abstract In vivo experiments have shown that melanocytes are more sensitive than keratinocytes to the cytotoxic effects of sulfur mustard when it is applied topically to pig skin.1 It has been hypothesized that this is caused by the uncoupling of the melanogenic pathway by depletion of cellular glutathione, resulting in the uncontrolled production of cytotoxic quinone free-radical species by tyrosinase.2. In the present study, the feasibility of blocking the melanogenic pathway as a means of reducing the cytotoxicity of sulfur mustard was evaluated using kojic acid. Kojic acid is a topically applied depigmenting agent that exerts its effect by acting as a slow-binding, competitive inhibitor of tyrosinase.3 Preincubation of G361 pigmented melanoma cells and mixed cultures of G361 cells and SVK keratinocytes with 2.5 mM kojic acid resulted in significant increases in the viability of these cultures as determined by neutral red (NR) and gentian violet (GV) dye binding assays for up to 48 h following exposure to 50 µM sulfur mustard. The highest levels of protection were seen in the G361 cultures, with a 26.8% increase in culture viability (NR assay) compared with the sulfur-mustard-only controls at 24 h. Preincubation of SVK cells alone with kojic acid resulted in lower increases in viability (2.5% at 24 h by the NR assay). Inhibition of the melanogenic pathway reduces the sensitivity of cultures containing pigment cells to sulfur mustard. © Crown copyright 2001. Reproduced with the permission of Her Majesty's Stationery Office. Published by John Wiley & Sons, Ltd. [source]


    Regulation of gene expression in melanoma: New approaches for treatment

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2005
    Michael C. Leslie
    Abstract The molecular changes associated with the transition of melanoma cells from radial growth phase (RGP) to vertical growth phase (VGP, metastatic phenotype) are not yet well defined. We have demonstrated that the progression of human melanoma is associated with loss of expression of the transcription factor AP-2. In metastatic melanoma cells, this loss resulted in overexpression of MCAM/MUC18, MMP-2, the thrombin receptor (PAR-1), and lack of c-KIT expression. The transition from RGP to VGP is also associated with overexpression of the angiogenic factor IL-8. Additionally, the transition of melanoma cells from RGP to VGP is associated with overexpression of the transcription factors CREB and ATF-1, both of which may act as survival factors for human melanoma cells. Inactivation of CREB/ATF-1 activities in metastatic melanoma cells by dominant-negative CREB or by anti-ATF-1 single chain antibody fragment (ScFv), resulted in deregulation of MMP-2 and MCAM/MUC18, increased the sensitivity of melanoma cells to apoptosis, and inhibition of their tumorigenicity and metastatic potential in vivo. In this prospect article, we summarize our data on the role of AP-2 and CREB/ATF-1 in the progression of human melanoma and report on the development of new fully human antibodies anti-MCAM/MUC18 and anti-IL-8 which could serve as new modalities for the treatment of melanoma. © 2004 Wiley-Liss, Inc. [source]


    In vitro and in vivo tumor growth inhibition by a p16-mimicking peptide in p16INK4A -defective, pRb-positive human melanoma cells

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2005
    Douglas M. Noonan
    The cell cycle regulatory pathway responsible for the control of the late-G1 checkpoint is found recurrently altered in human malignant melanoma, often due to lack of functional p16 or pRb (pRb-1) proteins. Here we examined the ability of p16-derived peptides to mimic p16 function in two exemplary human melanoma cell lines: the p16-defective, pRb-positive A375M cells and p16-positive, pRb-defective A2058 cells. The synthetic p16-mimicking peptides strongly induced apoptosis in p16,, pRb+ A375M cells in vitro, while they had significantly less activity on p16+, pRb, A2058 cells. The most active p16-mimicking peptide, p16-AP9, also potently inhibited in vivo growth of the A375M melanoma. Treated tumors showed a threefold smaller volume (P,<,0.025) and a significant reduction of the mitotic index and of PCNA expression. Growth of A2058 cells in vivo was not affected by treatment with the p16-mimicking peptide. Our results demonstrate that p16-mimicking peptides can induce apoptosis in vitro and that can inhibit tumor growth in vivo in p16-defective, pRb-expressing human melanoma cells, suggesting that p16-mimicking peptides can represent a promising tool for targeted therapy in selected cancer phenotypes. © 2004 Wiley-Liss, Inc. [source]


    Overexpression of malignancy-associated laminins and laminin receptors by angiotropic human melanoma cells in a chick chorioallantoic membrane model

    JOURNAL OF CUTANEOUS PATHOLOGY, Issue 12 2009
    Claire Lugassy
    Background: As distinct from intravascular/lymphatic dissemination, extravascular migratory metastasis (EVMM) has been described as a potential additional mechanism of melanoma spread in which tumor cells migrate along the external surfaces of vessels. Angiotropic melanoma cells are linked to the endothelium by a matrix containing laminin. In addition, it has been shown that C16 laminin-derived peptide increases extravascular migration of human green fluorescent protein (GFP) melanoma cells along vessels in a chicken chorioallantoic membrane model (CAM). In this study, we have tested the hypothesis that expression levels of some genes related to lamimin and metastasis are differentially expressed in vascularized angiotropic melanoma areas vs. avascular melanoma areas from the same tumor. Design: C8161 human melanoma cells in a shell-less chick CAM assay were used to study EVMM associated with the presence of vascularized angiotropic melanoma areas. For both high-quality histomorphology and RNA preservation in paraffin-embedded tissue, we used a methanol-based fixative coupled with microwave-assisted rapid tissue processing as previously described. Using laser capture microdissection, angiotropic melanoma areas as well as avascular areas were microdissected. Using quantitative real time polymerase chain reaction (QRT-PCR), six genes have been studied: LAMC2 (laminin ,2 chain), LAMA4 (laminin ,4 chain), ITGB1 (integrin ,1), ITGB3 (integrin ,3), RSPA (ribosomal protein), and MMP2 (matrix metallopeptidase 2). QRT-PCR data were normalized to human GAPDH housekeeping gene and values were compared against Human Total RNA. Final results were expressed as percentage of expression. Results: All tumors demonstrated a similar pattern, i.e. EVMM of angiotropic melanoma cells. The microdissected histopathological sections presented both angiotropic areas and avascular areas. All genes were overexpressed in angiotropic melanoma areas vs. avascular melanoma areas, especially LAMC2, LAMA4 and ITGB3 (respectively, 165.18, 208.86, and 483.69%). Conclusion: This study shows that several genes related to laminin are overexpressed in angiotropic melanoma areas vs. avascular melanoma areas. Since extravascular migration of melanoma cells along vessels has been demonstrated in the CAM model, taken together these results suggests that some laminins and laminin receptors may play a role in extravascular migratory metastasis. This model may represent a promising strategy to analyze differential gene expression in EVMM. [source]


    Nucleolar organizer region staining patterns in paraffin-embedded tissue cells from human skin cancers

    JOURNAL OF CUTANEOUS PATHOLOGY, Issue 5 2005
    Rosana F. Romăo-Corręa
    Background:, Increased number of nucleoli (nucleolar organizer regions, NORs) with abnormal shapes and sizes, including small dots, has been used as prognostic tools to evaluate tumor proliferation levels and troublesome borderline lesions. In this study, NOR patterns of skin cancers were performed in the search of a valuable prognostic method to complement other histological procedures. Methods:, Paraffin-embedded tumor tissue was obtained from basal and squamous cell carcinomas, cutaneous malignant melanoma, premalignant lesions, and Skmel-28 human melanoma cells. Slices were dewaxed and AgNOR stained. The patterns were scored and submitted for statistical analyses. Results:, All types of cancer cells showed variable numbers of abnormally shaped nucleoli and dot-like structures. Only tumor cells presented four or more nucleoli, with or without dots, while 85% of the normal cells had one single NOR without dots. Most data were statistically significant when compared to normal cells. As a whole, squamous cell carcinoma and malignant melanoma tumor cells had less NOR alterations than basal cell carcinoma (BCC) tumor types. Conclusions:, Changes in the number and shape of nucleoli present in malignant cells could be attributed to increased levels on rDNA transcription on cancer cells, besides abnormal remodeling of chromatin, which could disrupt proper nucleoli association. Increased genetic alterations on malignant basal cells could contribute to impair invasive and migration abilities of BCC tumors. [source]


    BI-69A11-mediated inhibition of AKT leads to effective regression of xenograft melanoma

    PIGMENT CELL & MELANOMA RESEARCH, Issue 2 2009
    Supriya Gaitonde
    Summary The AKT/PKB pathway plays a central role in tumor development and progression and is often up-regulated in different tumor types, including melanomas. We have recently reported on the in silico approach to identify putative inhibitors for AKT/PKB. Of the reported hits, we selected BI-69A11, a compound which was shown to inhibit AKT activity in in vitro kinase assays. Analysis of BI-69A11 was performed in melanoma cells, a tumor type that commonly exhibits up-regulation of AKT. Treatment of the UACC903 human melanoma cells, harboring the PTEN mutation, with BI-69A11 caused efficient inhibition of AKT S473 phosphorylation with concomitant inhibition of AKT phosphorylation of PRAS40. Treatment of melanoma cells with BI-69A11 also reduced AKT protein expression, which coincided with inhibition of AKT association with HSP-90. BI-69A11 treatment not only caused cell death of melanoma, but also prostate tumor cell lines. Notably, the effect of BI-69A11 on cell death was more pronounced in cells that express an active form of AKT. Significantly, intra-peritoneal injection of BI-69A11 caused effective regression of melanoma tumor xenografts, which coincided with elevated levels of cell death. These findings identify BI-69A11 as a potent inhibitor of AKT that is capable of eliciting effective regression of xenograft melanoma tumors. [source]


    Quercetin Enhances Melanogenesis By Increasing the Activity and Synthesis of Tyrosinase in Human Melanoma Cells and in Normal Human Melanocytes

    PIGMENT CELL & MELANOMA RESEARCH, Issue 1 2004
    Hidetaka Nagata
    Quercetin (3,3,,4,,5,7-pentahydroxyflavone) is a diphenyl propanoid widely distributed in edible plants. In this study, we examined the effect of quercetin on melanogenesis in human HMVII melanoma cells and in normal human epidermal melanocytes (NHEM) in the absence of ultraviolet radiation. Upon the addition of quercetin to the culture medium, the melanin content in melanoma cells (HMVII) increased remarkably in time- and dose-dependent manners. In addition, quercetin induced melanogenesis in cultured NHEM. As compared with controls, melanin content was increased about sevenfold by treatment with 20 ,M (HMVII) or 1 ,M (NHEM) quercetin for 7 d. Tyrosinase activity was also increased, to 61.8-fold higher than the control. The expression of tyrosinase protein was slightly increased by the addition of quercetin. However, quercetin did not affect the expression of tyrosinase mRNA. Tyrosinase activation by quercetin was blocked by actinomycin-D or by cycloheximide demonstrating that its actions in stimulating melanogenesis may involve both transcriptional and translational events. Tyrosinase activity was increased dramatically whereas the level of melanogenic inhibitor was remarkably decreased following quercetin treatment. Taken together, these results demonstrate that in human melanoma cells and in NHEM, quercetin stimulates melanogenesis by increasing tyrosinase activity and decreasing other factors such as melanogenic inhibitors. [source]


    Proteomic analysis identified N-cadherin, clusterin, and HSP27 as mediators of SPARC (secreted protein, acidic and rich in cysteines) activity in melanoma cells

    PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 22 2007
    María Soledad Sosa
    Abstract Secreted protein, acidic and rich in cysteines (SPARC) is a secreted protein associated with increased aggressiveness of different human cancer types. In order to identify downstream mediators of SPARC activity, we performed a 2-DE proteomic analysis of human melanoma cells following antisense-mediated downregulation of SPARC expression. We found 23/504 differential spots, 15 of which were identified by peptide fingerprinting analysis. Three of the differential proteins (N-cadherin (N-CAD), clusterin (CLU), and HSP27) were validated by immunoblotting, confirming decreased levels of N-CAD and CLU and increased amounts of HSP27 in conditioned media of cells with diminished SPARC expression. Furthermore, transient knock down of SPARC expression in melanoma cells following adenoviral-mediated transfer of antisense RNA confirmed these changes. We next developed two different RNAs against SPARC that were able to inhibit in vivo melanoma cell growth. Immunoblotting of the secreted fraction of RNAi-transfected melanoma cells confirmed that downregulation of SPARC expression promoted decreased levels of N-CAD and CLU and increased secretion of HSP27. Transient re-expression of SPARC in SPARC-downregulated cells reverted extracellular N-CAD, CLU, and HSP27 to levels similar to those in the control. These results constitute the first evidence that SPARC, N-CAD, CLU, and HSP27 converge in a unique molecular network in melanoma cells. [source]


    Effect of ultraviolet (UV) A, UVB or ionizing radiation on the cell cycle of human melanoma cells

    BRITISH JOURNAL OF DERMATOLOGY, Issue 5 2007
    M. Placzek
    Summary Background, One important component of the cellular response to irradiation is the activation of cell cycle checkpoints. It is known that both ultraviolet (UV) radiation and ionizing radiation (IR) can activate checkpoints at transitions from G1 to S phase, from G2 phase to mitosis and during DNA replication. Objectives, To evaluate the effects of irradiation with different wavelengths on cell cycle alterations. Methods, p53-deficient IPC-298 melanoma cells were irradiated with 10 J cm,2 UVA, 40 mJ cm,2 UVB, or with 7·5 Gy IR. Cell cycle effects were then determined by DNA/5-bromodeoxyuridine dual-parameter flow cytometry. Results, IPC-298 cells irradiated in G1 with UVA were not arrested at the G1/S transition, but at the G2/M transition. Despite p53 deficiency, the cells showed a G1 arrest after UVB exposure. Furthermore, IR did not affect G1 or S phase, but induced G2 phase arrest. Hence, the effects of UVA, but not of UVB, on the cell cycle in p53-deficient melanoma cells are comparable with those of IR. Conclusions, UVA and IR induce radical-mediated strand breaks and DNA lesions, and UVB essentially induces thymine dimers that lead to excision repair-related strand breaks. Different cell cycle effects may be a consequence of different types of DNA damage. The results showed that UVB-irradiated p53-deficient cells are arrested in G1. Irradiation with the solar radiation component UVB can therefore result in a beneficial retardation of tumour promotion in human skin carrying p53-mutated cell clones. [source]


    3- O -methylfunicone, a metabolite of Penicillium pinophilum, inhibits proliferation of human melanoma cells by causing G2 + M arrest and inducing apoptosis

    CELL PROLIFERATION, Issue 4 2009
    A. Baroni
    Objectives:, Melanoma cells take advantage of impaired ability to undergo programmed cell death in response to different external stimuli and chemotherapeutic drugs; this makes prevention of tumour progression very difficult. The aim of this study was to demonstrate whether 3- O -methylfunicone (OMF), a metabolite of Penicillium pinophilum, has the ability to arrest cell population growth and to induce apoptosis in A375P (parental) and A375M (metastasis derivatived) melanoma cell lines. Materials and methods:, Cell proliferation and apoptosis were analysed by flow cytometry, DNA fragmentation, caspase-3 and caspase-9 activation, and PARP-1 cleavage. Results:, We demonstrated that OMF affected cell proliferation in a time- and dose-dependent manner, reaching the best effect at concentration of 80 µg/ml for 24 h. Flow cytometry revealed that OMF caused significant G2 phase arrest, which was associated with marked decrease in cyclin B1/p34cdc2 complex and p21 induction. OMF also induced marked decrease of survivin expression. Reduced levels of apoptosis were evident after silencing p21 expression in both cell lines. Finally, the effect exercised by OMF on hTERT and TEP-1 gene expression confirmed the ability of this molecule to interfere with replicative ability of cells. Conclusions:, The results reported here seem to suggest that OMF as a promising molecule to include in strategies for treatment of melanoma. [source]


    Off-Target Effects Related to the Phosphorothioate Modification of Nucleic Acids

    CHEMMEDCHEM, Issue 8 2010
    Johannes Winkler Dr.
    Abstract Phosphorothioate antisense oligonucleotides have been widely used in clinical studies for rational sequence-specific gene silencing. However, several sequence-unspecific off-target effects have been recently described for this compound class. In contrast to siRNA-mediated knockdown of the same gene, the bcl-2 -targeted oblimersen (Genasense, G3139) downregulates a number of proteins involved in apoptotic resistance and several glycolytic enzymes in 607B human melanoma cells. Regardless of their target, phosphorothioate-modified antisense and siRNA compounds, but not oligonucleotides with a phosphodiester backbone, resulted in a similar impact on the proteome. Unspecifically downregulated proteins include cancer markers involved in apoptotic resistance and endoplasmatic reticulum (ER) stress such as the 78,kDa glucose regulated protein (GRP,78), protein disulfide isomerase,A3 (PDIA3, GRP,58), calumenin, and galectin-1, as well as the glycolytic enzymes triose phosphate isomerase, glyceraldehyde phosphodehydrogenase, and phosphoglycerate mutase. The depletion of the glycolytic enzymes is reflected by a decrease in L -lactate production, indicating a partial reversal of the Warburg effect. Compared with other phosphorothioate oligonucleotides, oblimersen generally led to a more pronounced effect both in terms of the number of influenced proteins and the extent of downregulation, suggesting a synergistic effect of Bcl-2 downregulation. [source]


    Surface-Functionalized Ultrasmall Superparamagnetic Nanoparticles as Magnetic Delivery Vectors for Camptothecin

    CHEMMEDCHEM, Issue 6 2009
    Feride Cengelli
    Abstract Drug,nanoparticle conjugates: The anticancer drug camptothecin (CPT) was covalently linked at the surface of ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) via a linker, allowing drug release by cellular esterases. Nanoparticles were hierarchically built to achieve magnetically-enhanced drug delivery to human cancer cells and antiproliferative activity. The linking of therapeutic drugs to ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) allowing intracellular release of the active drug via cell-specific mechanisms would achieve tumor-selective magnetically-enhanced drug delivery. To validate this concept, we covalently attached the anticancer drug camptothecin (CPT) to biocompatible USPIOs (iron oxide core, 9,10,nm; hydrodynamic diameter, 52,nm) coated with polyvinylalcohol/polyvinylamine (PVA/aminoPVA). A bifunctional, end-differentiated dicarboxylic acid linker allowed the attachment of CPT to the aminoPVA as a biologically labile ester substrate for cellular esterases at one end, and as an amide at the other end. These CPT,USPIO conjugates exhibited antiproliferative activity in,vitro against human melanoma cells. The intracellular localization of CPT,USPIOs was confirmed by transmission electron microscopy (iron oxide core), suggesting localization in lipid vesicles, and by fluorescence microscopy (CPT). An external static magnetic field applied during exposure increased melanoma cell uptake of the CPT,USPIOs. [source]