Home About us Contact | |||
Human Malaria (human + malaria)
Terms modified by Human Malaria Selected AbstractsAtlas of Human Malaria (Atlante della Malaria Umana)JOURNAL OF TRAVEL MEDICINE, Issue 2 2008Giovanni Swierczynski No abstract is available for this article. [source] The accumulation of specific mRNAs following multiple blood meals in Anopheles gambiaeINSECT MOLECULAR BIOLOGY, Issue 1 2005X. Nirmala Abstract One approach to genetic control of transmission of the parasites that cause human malaria is based on expressing effector genes in mosquitoes that disable the pathogens. Endogenous mosquito promoter and other cis -acting DNA sequences are needed to direct the optimal tissue-, stage- and sex-specific expression of the effector molecules. The mRNA accumulation profiles of eight different genes expressed specifically in the midgut, salivary glands or fat body tissues of the malaria vector, Anopheles gambiae, were characterized as a measure of their suitability to direct the expression of effector molecules designed to disable specific stages of the parasites. RT-PCR techniques were used to determine the abundance of the gene products and their duration following multiple blood meals. Transcription from the midgut-expressed carboxypeptidase-encoding gene, AgCP, follows a cyclical, blood-inducible expression pattern with maximum accumulation every 3 h post blood meal. Other midgut-expressed genes encoding a trypsin and chymotrypsin, Antryp2 and Anchym1, respectively, and the fat body-expressed genes, Vg1 and Cathepsin, also show a blood-inducible pattern of expression with maximum accumulation 24 h after every blood meal. Expression of the Lipophorin gene in the fat body and apyrase and D7-related genes (AgApy and D7r2) in the salivary glands is constitutive and not significantly affected by blood meals. Promoters of the midgut- and fat body-expressed genes may lead to maximum accumulation of antiparasite effector molecule transcripts after multiple blood meals. The multiple feeding behaviour of An. gambiae thus can be an advantage to express high levels of antiparasite effector molecules to counteract the parasites throughout most of adult development. [source] Plasmepsins as potential targets for new antimalarial therapyMEDICINAL RESEARCH REVIEWS, Issue 5 2006Karolina Ersmark Abstract Malaria is one of the major diseases in the world. Due to the rapid spread of parasite resistance to available antimalarial drugs there is an urgent need for new antimalarials with novel mechanisms of action. Several promising targets for drug intervention have been revealed in recent years. This review addresses the parasitic aspartic proteases termed plasmepsins (Plms) that are involved in the hemoglobin catabolism that occurs during the erythrocytic stage of the malarial parasite life cycle. Four Plasmodium species are responsible for human malaria; P. vivax, P. ovale, P. malariae, and P. falciparum. This review focuses on inhibitors of the haemoglobin-degrading plasmepsins of the most lethal species, P. falciparum; Plm I, Plm II, Plm IV, and histo-aspartic protease (HAP). Previously, Plm II has attracted the most attention. With the identification and characterization of new plasmepsins and the results from recent plasmepsin knockout studies, it now seems clear that in order to achieve high-antiparasitic activities in P. falciparum -infected erythrocytes it is necessary to inhibit several of the haemoglobin-degrading plasmepsins. Herein we summarize the structure,activity relationships of the Plm I, II, IV, and HAP inhibitors. These inhibitors represent all classes which, to the best of our knowledge, have been disclosed in journal articles to date. The 3D structures of inhibitor/plasmepsin II complexes available in the protein data bank are briefly discussed and compared. © 2006 Wiley Periodicals, Inc. Med Res Rev, 26, No. 5, 626,666, 2006 [source] Insect immunity and its implication in mosquito,malaria interactionsCELLULAR MICROBIOLOGY, Issue 1 2003George Dimopoulos Summary Insects' resistance to infectious agents is essential for their own survival and also for the health of the plant, animal and human populations with which they closely interact. Several of the major human diseases are spread by insects and are rapidly expanding as a result of the development of insecticide resistance in vectors and drug resistance in parasites. A vector insects' permissiveness to a pathogen, and hence the spread of the disease, will largely depend on the compatibility of the molecular interactions between the two species and the capability of the insect immune system to recognize and kill the pathogen. The innate immune system comprises a variety of components and mechanisms that can discriminate between different microorganisms and mount specific responses to control pathogenic infections. An impressive body of knowledge on the insects' innate immunity has been generated from studies in the model organism Drosophila. These studies are now guiding the exploration of the immune system in the vector mosquito of human malaria, Anopheles, and its implication in the elimination of parasites. Anopheles immune responses have been linked to parasite losses and some refractory mosquitoes can kill all parasites through specific defence mechanisms. The recently sequenced Drosophila and Anopheles genomes provide a detailed and comparative view on their immune gene repertoires that in combination with post-genomic analyses is used to further dissect the complex mechanisms of Plasmodium killing in the mosquito. [source] Reactivity of human T-lymphocyte-specific antibodies with peripheral blood mononuclear cells and spleen of Aotus azarae ssp. boliviensis (owl monkey)JOURNAL OF MEDICAL PRIMATOLOGY, Issue 6 2000Jan A.M. Langermans Aotus monkeys offer one of the few models that can be used for the evaluation of the immunogenicity and efficacy of new vaccine candidates against the human malarias, Plasmodium falciparum and Plasmodium vivax. However, the tools available for evaluation of the immune responses in these New World primates are still limited. In the present study, a previously selected set of monoclonal antibodies that were raised against human T cell determinants and were reactive with at least one other primate species was investigated for its reactivity with Aotus lymphocytes using FACS analysis, indirect immunofluorescence (IFA) and immunohistochemistry. From a panel of 19 mAb, six were found to react consistently with Aotus lymphocytes using FACS analysis. Further evaluation of the mAb using IFA confirmed these findings. Analysis of the selected mAb on spleen sections of Aotus monkeys identified one anti-CD4 and one anti-CD8 mAb that can be used for immunohistochemical studies. The set of mAb identified in this study can be used for the detection of various T lymphocyte markers in peripheral blood and in tissues of Aotus monkeys. Together with data published by others, mAb are now identified for detection of six different markers of Aotus T lymphocytes. These mAb are very valuable for the characterisation of immune responses after vaccination and infection in the Aotus malaria models. [source] |