Home About us Contact | |||
Human Macrophages (human + macrophage)
Selected AbstractsInterleukin-6 Induction by Helicobacter pylori in Human Macrophages is Dependent on PhagocytosisHELICOBACTER, Issue 3 2006Stefan Odenbreit Abstract Background:, The colonization of the gastric mucosa with Helicobacter pylori is accompanied by elevated levels of proinflammatory cytokines, such as interleukin-1 (IL-1), IL-6, and IL-8. The aim of our study was to determine the mechanisms of IL-6 stimulation in phagocytes upon H. pylori infection. Materials and Methods:, We investigated the secretion of IL-6 by different professional phagocytes from murine and human origin, including granulocyte- and monocyte-like cells and macrophages derived from human peripheral blood monocytes (PBMCs). The influence of viability, phagocytosis, and the impact of different subcellular fractions of H. pylori bacteria were evaluated. Results:, IL-6 levels induced by H. pylori were low in cell lines derived from murine and human monocytes and in human granulocyte-like cells. By contrast, macrophages derived from human PBMCs were highly responsive to both H. pylori and Escherichia coli. IL-6 induction was blocked by inhibition of actin-dependent processes prior to infection with H. pylori, but not with E. coli or E. coli lipopolysaccharide (LPS). Using cell fractionation, the most activity was found in the H. pylori membrane. H. pylori LPS exhibited a 103 - to 104 -fold lower biologic activity than E. coli LPS, suggesting a minor role for toll-like receptor 4 (TLR4)-mediated signalling from the exterior. Conclusions:, From these data, we conclude that macrophages may be a major source of IL-6 in the gastric mucosa upon H. pylori infection. The IL-6 induction by H. pylori in these cells is a multifactorial process, which requires the uptake and presumably degradation of H. pylori bacteria. [source] Serotonin decreases HIV-1 replication in primary cultures of human macrophages through 5-HT1A receptorsBRITISH JOURNAL OF PHARMACOLOGY, Issue 1 2008B Manéglier Background and purpose: 5-HT (serotonin) is known to be involved in neuroinflammation and immunoregulation. The human immunodeficiency virus (HIV) targets cells such as monocytes/macrophages, which colocalize with 5-HT-releasing cell types, mostly platelets. In this study, we investigated the effects of 5-HT on HIV-1-infected macrophages in vitro. Experimental approach: Human macrophages cultured in serum-free medium were treated over 7 days with 5-HT at three concentrations (0.01, 1 and 100 ,M) with or without agonists and antagonists of 5-HT1A and 5-HT2 receptors. After 7 days of treatment, macrophages were infected with HIV-1/Ba-L and virus replication was monitored over 16 days and expression of proviral HIV DNA was investigated by PCR after 24 h of infection. Cell surface expression of HIV-1/Ba-L receptor (CD4) and coreceptor (CCR5) was investigated by flow cytometry. The CCR5 ligand, macrophage inflammatory protein-1, (MIP-1,), was quantified by ELISA in cell culture supernatants and MIP-1, mRNA expression was assessed by reverse transcriptase-PCR. Key results:In vitro, 5-HT downregulated the membranous expression of CCR5 and led to a decrease of HIV-1 infection, probably through its action on 5-HT1A receptors. 5-HT (100 ,M) was also able to induce overexpression of MIP-1, mRNA leading to an increase of MIP-1, secretion by human macrophages. Conclusions and implications: The effects of 5-HT on HIV infection could be a consequence of the increase in MIP-1, concentrations and/or CCR5 receptor downregulation. These results suggest that 5-HT can inhibit the replication of HIV-1 in primary culture of human macrophages through its action on 5-HT1A receptors. [source] Non-opsonic phagocytosis of homologous non-toxigenic and toxigenic Corynebacterium diphtheriae strains by human U-937 macrophagesMICROBIOLOGY AND IMMUNOLOGY, Issue 1 2010Cíntia Silva Dos Santos ABSTRACT As interactions between bacteria and macrophages dictate the outcome of most infectious diseases, analyses of molecular mechanisms of non-opsonic phagocytosis should lead to new approaches for the prevention of diphtheria and systemic Corynebacterium diphtheriae infections. The present study aimed to evaluate human macrophage,bacteria interactions in the absence of opsonin antibodies and the influence of the tox gene on this process. Homologous C. diphtheriae tox+ and tox, strains were evaluated for adhesion, entering and survival within U-937 human macrophages at different incubation periods. Higher numbers of viable bacteria associated with and internalized by macrophages were demonstrated for the tox+ strain. However, viable intracellular bacteria were detected at T-24 hr only for the tox, strain. Cytoskeletal inhibitors, cytochalasin E, genistein and colchicine, inhibited intracellular viability of both strains at different levels. Bacterial replication was evidenced at T-24 hr in supernatants of monolayers infected with the tox, strain. Host cell death and nuclear alterations were evidenced by the Trypan blue exclusion assay and DAPI fluorescence microscopy. ELISA of histone-associated DNA fragments allowed detection of apoptosis and necrosis induced by tox+ and tox, strains at T-1 hr and T-3 hr. In conclusion, human macrophages in the absence of opsonins may not be promptly effective at killing diphtheria bacilli. The presence of the tox gene influences the susceptibility of C. diphtheriae to human macrophages and the outcome of non-opsonic phagocytosis. C. diphtheriae strains exhibit strategies to survive within macrophages and to exert apoptosis and necrosis in human phagocytic cells, independent of the tox gene. [source] Glycation of low-density lipoprotein results in the time-dependent accumulation of cholesteryl esters and apolipoprotein B-100 protein in primary human monocyte-derived macrophagesFEBS JOURNAL, Issue 6 2007Bronwyn E. Brown Nonenzymatic covalent binding (glycation) of reactive aldehydes (from glucose or metabolic processes) to low-density lipoproteins has been previously shown to result in lipid accumulation in a murine macrophage cell line. The formation of such lipid-laden cells is a hallmark of atherosclerosis. In this study, we characterize lipid accumulation in primary human monocyte-derived macrophages, which are cells of immediate relevance to human atherosclerosis, on exposure to low-density lipoprotein glycated using methylglyoxal or glycolaldehyde. The time course of cellular uptake of low-density lipoprotein-derived lipids and protein has been characterized, together with the subsequent turnover of the modified apolipoprotein B-100 (apoB) protein. Cholesterol and cholesteryl ester accumulation occurs within 24 h of exposure to glycated low-density lipoprotein, and increases in a time-dependent manner. Higher cellular cholesteryl ester levels were detected with glycolaldehyde-modified low-density lipoprotein than with methylglyoxal-modified low-density lipoprotein. Uptake was significantly decreased by fucoidin (an inhibitor of scavenger receptor SR-A) and a mAb to CD36. Human monocyte-derived macrophages endocytosed and degraded significantly more 125I-labeled apoB from glycolaldehyde-modified than from methylglyoxal-modified, or control, low-density lipoprotein. Differences in the endocytic and degradation rates resulted in net intracellular accumulation of modified apoB from glycolaldehyde-modified low-density lipoprotein. Accumulation of lipid therefore parallels increased endocytosis and, to a lesser extent, degradation of apoB in human macrophages exposed to glycolaldehyde-modified low-density lipoprotein. This accumulation of cholesteryl esters and modified protein from glycated low-density lipoprotein may contribute to cellular dysfunction and the increased atherosclerosis observed in people with diabetes, and other pathologies linked to exposure to reactive carbonyls. [source] Amoebal pathogens as emerging causal agents of pneumoniaFEMS MICROBIOLOGY REVIEWS, Issue 3 2010Frédéric Lamoth Abstract Despite using modern microbiological diagnostic approaches, the aetiological agents of pneumonia remain unidentified in about 50% of cases. Some bacteria that grow poorly or not at all in axenic media used in routine clinical bacteriology laboratory but which can develop inside amoebae may be the agents of these lower respiratory tract infections (RTIs) of unexplained aetiology. Such amoebae-resisting bacteria, which coevolved with amoebae to resist their microbicidal machinery, may have developed virulence traits that help them survive within human macrophages, i.e. the first line of innate immune defence in the lung. We review here the current evidence for the emerging pathogenic role of various amoebae-resisting microorganisms as agents of RTIs in humans. Specifically, we discuss the emerging pathogenic roles of Legionella -like amoebal pathogens, novel Chlamydiae (Parachlamydia acanthamoebae, Simkania negevensis), waterborne mycobacteria and Bradyrhizobiaceae (Bosea and Afipia spp.). [source] Role of Immune Serum in the Killing of Helicobacter pylori by MacrophagesHELICOBACTER, Issue 3 2010Stacey Keep Abstract Background:,Helicobacter pylori infection can lead to the development of gastritis, peptic ulcers and gastric cancer, which makes this bacterium an important concern for human health. Despite evoking a strong immune response in the host, H. pylori persists, requiring complex antibiotic therapy for eradication. Here we have studied the impact of a patient's immune serum on H. pylori in relation to macrophage uptake, phagosome maturation, and bacterial killing. Materials and Methods:, Primary human macrophages were infected in vitro with both immune serum-treated and control H. pylori. The ability of primary human macrophages to kill H. pylori was characterized at various time points after infection. H. pylori phagosome maturation was analyzed by confocal immune fluorescence microscopy using markers specific for H. pylori, early endosomes (EEA1), late endosomes (CD63) and lysosomes (LAMP-1). Results:, Immune serum enhanced H. pylori uptake into macrophages when compared to control bacteria. However, a sufficient inoculum remained for recovery of viable H. pylori from macrophages, at 8 hours after infection, for both the serum-treated and control groups. Both serum-treated and control H. pylori phagosomes acquired EEA1 (15 minutes), CD63 and LAMP-1 (30 minutes). These markers were then retained for the rest of an 8 hour time course. Conclusions:, While immune sera appeared to have a slight positive effect on bacterial uptake, both serum-treated and control H. pylori were not eliminated by macrophages. Furthermore, the same disruptions to phagosome maturation were observed for both serum-treated and control H. pylori. We conclude that to eliminate H. pylori, a strategy is required to restore the normal process of phagosome maturation and enable effective macrophage killing of H. pylori, following a host immune response. [source] Functional polymorphism in ALOX15 results in increased allele-specific transcription in macrophages through binding of the transcription factor SPI1 ,HUMAN MUTATION, Issue 1 2006Jonas Wittwer Abstract The reticulocyte-type 15-lipoxygenase-1 (ALOX15) has antiinflammatory and inflammatory effects, and is implicated in the development of asthma, arthritis, and atherosclerosis. We screened the human ALOX15 gene for variations because genetic variability in ALOX15 may influence these diseases. We detected 11 variations, including five polymorphisms located in the ALOX15 promoter region. One of these polymorphisms, a C-to-T substitution at position c.,292, created a novel transcription factor binding site for SPI1. Transcription assays revealed that promoter variants with c.,292 T transcribe twice as efficiently as all the other promoter variants containing c.,292C. This was true in macrophages that constitutively express SPI1, but not in a lung epithelial cell line that does not express SPI1. Mutation of the core-binding site for SPI1 abolished the higher transcriptional activity, and electrophoretic mobility shift assays showed that SPI1 selectively binds to the mutant c.,292 T and c.,292C promoter. These results were corroborated in primary human macrophages, in which macrophages from heterozygous c.,292CT carriers expressed three times more ALOX15 mRNA than macrophages from homozygous c.,292CC carriers. We conclude that the c.,292 T allele in the ALOX15 promoter generates a novel binding site for the transcription factor SPI1 that results in higher transcription of the gene in macrophages. This may lead to an increase in ALOX15-mediated lipid metabolites, which play a role in inflammation. Hum Mutat 27(1), 78,87, 2006. © 2005 Wiley-Liss, Inc. [source] Secretion of interferon-, by human macrophages demonstrated at the single-cell level after costimulation with interleukin (IL)-12 plus IL-18IMMUNOLOGY, Issue 3 2009Laila Darwich Summary The interferon (IFN)-, component of the immune response plays an essential role in combating infectious and non-infectious diseases. Induction of IFN-, secretion by human T and natural killer (NK) cells through synergistic costimulation with interleukin (IL)-12 and IL-18 in the adaptive immune responses against pathogens is well established, but induction of similar activity in macrophages is still controversial, with doubts largely focusing on contamination of macrophages with NK or T cells in the relevant experiments. The possible contribution of macrophages to the IFN response is, however, an important factor relevant to the pathogenesis of many diseases. To resolve this issue, we analysed the production of IFN-, at the single-cell level by immunohistochemistry and by enzyme-linked immunosorbent spot (ELISPOT) analysis and unequivocally demonstrated that human macrophages derived from monocytes in vitro through stimulation with a combination of IL-12 and IL-18 or with macrophage colony-stimulating factor (M-CSF) were able to produce IFN-, when further stimulated with a combination of IL-12 and IL-18. In addition, naturally activated alveolar macrophages immediately secreted IFN-, upon treatment with IL-12 and IL-18. Therefore, human macrophages in addition to lymphoid cells contribute to the IFN-, response, providing another link between the innate and acquired immune responses. [source] Activation of human macrophages by allogeneic islets preparations: inhibition by AOP-RANTES and heparinoidsIMMUNOLOGY, Issue 4 2004Séverine Sigrist Summary During transplantation, pancreatic islets release chemokines which promote macrophage attraction, hampering engraftment of islets. The aim of this study was to modulate chemotaxis and the immune response of human macrophages induced by islets. Human monocyte-derived macrophages of healthy subjects were exposed to supernatants of human islets. Chemotaxis, tumour necrosis factor-, (TNF-,) and interleukin-1, (IL-1,) release were evaluated. To modulate migration, human macrophages were incubated in the presence of aminooxypentane-regulated on activation, normal, T-cell expressed, and secreted (AOP-RANTES), a potent antagonist of CCR5. Chemotactic activity of islets supernatant was modulated by the addition of heparin or heparinoids [pentosan and calix[8S]arene (C8S)]. AOP-RANTES significantly reduced, in a dose-dependent manner, macrophage chemotaxis and cytokine release induced by islets supernatant. The chemotactic index was reduced from 3·05 ± 0·27 to 0·71 ± 12, TNF-, from 1205 ± 52 to 202 ± 12 pg/ml, and IL-1, from 234 ± 12 to 10 ± 6 pg/ml. The trapping of chemokines by heparinoids reduced the chemotactic activity of islets supernatant from 3·05 ± 0·27 to 1·2 ± 0·1 with heparin or pentosan and to 1·72 ± 0·22 with C8S, and also decreased the TNF-, release by human macrophages from 1205 ± 35 to 1000 ± 26 (C8S), 250 ± 21 (heparin) and 320 ± 19 (pentosan) pg/ml, and IL-1, from 234 ± 13 to 151 ± 5 (C8S), 50 ± 3 (heparin) and 57 ± 4 (pentosan) pg/ml. In conclusion, AOP-RANTES and heparinoids inhibit human macrophage activation and migration induced by islets supernatant. [source] Specificity of a new lipid mediator produced by testicular and peritoneal macrophages on steroidogenesisINTERNATIONAL JOURNAL OF ANDROLOGY, Issue 5 2000Lukyanenko Macrophage-derived factor (MDF) is a lipophilic factor produced by rat testicular and peritoneal macrophages that maximally stimulates testosterone production by rat Leydig cells through a steroidogenic acute regulatory protein independent mechanism. The purpose of the present study was to determine whether MDF is also produced by human macrophages, and/or if it acts on human steroidogenic cells. We also studied the tissue-specific functions of MDF by determining if it also acts on steroidogenic cells of the ovary and adrenal glands and, if so, does it require new protein synthesis. It was found that MDF was produced by human peritoneal macrophages, and was capable of stimulating human steroidogenic cells. In terms of tissue specificity, it was found that primary cultures of rat adrenocortical cells respond to MDF with increased secretion of aldosterone and corticosterone, as did rat granulosa cells by producing progesterone. MDF acted in the presence of cycloheximide, indicating that it does not require new protein synthesis. These results indicate that MDF may have significant therapeutic potential and provide a basis for future studies concerning its physiological role in humans. These results further suggest that MDF is not only involved in paracrine regulation of Leydig cells, but also has the potential for the local regulation of steroidogenesis in both granulosa and adrenal cortical cells. [source] Leupaxin Is a Critical Adaptor Protein in the Adhesion Zone of the Osteoclast,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 4 2003Anandarup Gupta Abstract Leupaxin is a cytoskeleton adaptor protein that was first identified in human macrophages and was found to share homology with the focal adhesion protein, paxillin. Leupaxin possesses several protein-binding domains that have been implicated in targeting proteins such as focal adhesion kinase (pp125FAK) to focal adhesions. Leupaxin can be detected in monocytes and osteoclasts, both cells of hematopoietic origin. We have identified leupaxin to be a component of the osteoclast podosomal signaling complex. We have found that leupaxin in murine osteoclasts is associated with both PYK2 and pp125FAK in the osteoclast. Treatment of osteoclasts with TNF-, and soluble osteopontin were found to stimulate tyrosine phosphorylation of both leupaxin and leupaxin-associated PYK2. Leupaxin was found to co-immunoprecipitate with the protein tyrosine phosphatase PTP-PEST. The cellular distribution of leupaxin, PYK2, and protein tyrosine phosphorylation-PEST co-localized at or near the osteoclast podosomal complex. Leupaxin was also found to associate with the ARF-GTPase-activating protein, paxillin kinase linker p95PKL, thereby providing a link to regulators of cytoskeletal dynamics in the osteoclast. Overexpression of leupaxin by transduction into osteoclasts evoked numerous cytoplasmic projections at the leading edge of the cell, resembling a motile phenotype. Finally, in vitro inhibition of leupaxin expression in the osteoclast led to a decrease in resorptive capacity. Our data suggest that leupaxin may be a critical nucleating component of the osteoclast podosomal signaling complex. [source] Inhibitory effects of N -acetylcysteine on scavenger receptor class A expression in human macrophagesJOURNAL OF INTERNAL MEDICINE, Issue 5 2002L. SVENSSON Abstract.,Svensson L, Norén K, Wiklund O, Lindmark H, Ohlsson B, Mattsson Hultén L (Wallenberg Laboratory for Cardiovascular Research, The Sahlgrenska Academy at Göteborg University, Göteborg; and AstraZeneca, Mölndal, Sweden). Inhibitory effects of N -acetylcysteine on scavenger receptor class A expression in human macrophages. J Intern Med 2002; 251:. Objective.,The formation of foam cells from monocyte-derived macrophages involves the uptake of modified lipoproteins by scavenger receptors. Antioxidants inhibit lipoprotein oxidation and may also modulate gene expression. We investigated the effect of the antioxidant N -acetylcysteine on the expression of the class A scavenger receptor (SR-A) types I and II in human macrophages. Design.,Monocytes and macrophages from healthy blood donors and plaque-derived macrophages from patients undergoing carotid endartherectomy were used for experiments. SR-A mRNA was analysed with quantitative and semiquantitative reverse transcription-polymerase chain reaction, and ligand binding and uptake were assessed with 125I-labelled acetylated low-density lipoprotein (LDL). Results.,Incubation of monocytes and monocyte-derived macrophages with N -acetylcysteine decreased both SR-A I and II mRNA expression. N -Acetylcysteine also reduced SR-A mRNA in lesion-derived cells. Binding and uptake of 125I-acetylated LDL was decreased after brief incubation with N -acetylcysteine. After longer periods of incubation with N -acetylcysteine we observed an increased degradation of lipoproteins. Conclusions.,Our results imply that N -acetylcysteine leads to a decrease in SR-A mRNA and initially also to an attenuated uptake of modified lipoproteins. This adds more to the knowledge about the cellular actions of this drug. [source] Soluble and particulate Co-Cr-Mo alloy implant metals activate the inflammasome danger signaling pathway in human macrophages: A novel mechanism for implant debris reactivityJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 7 2009Marco S. Caicedo Abstract Immune reactivity to soluble and particulate implant debris remains the primary cause of aseptic inflammation and implant loosening. However, the intracellular mechanisms that trigger immune cells to sense and respond to exogenous nonbiological agents such as metal particles or metal ions released from orthopedic implants remain unknown. Recent studies in immunology have outlined the importance of the intracellular inflammasome complex of proteins in sensing danger/stress signals triggered by nonbiological agents in the cytosol of macrophages. We hypothesized that metal implant debris can activate the inflammasome pathway in macrophages that causes caspase-1-induced cleavage of intracellular pro-IL-1, into its mature form, resulting in IL-1, secretion and induction of a broader proinflammatory response. We tested this hypothesis by examining whether soluble cobalt, chromium, molybdenum, and nickel ions and Co-Cr-Mo alloy particles induce inflammasome- mediated macrophage reactivity. Our results demonstrate that these agents stimulate IL-1, secretion in human macrophages that is inflammasome mediated (i.e., NADPH-, caspase-1-, Nalp3-, and ASC-dependent). Thus, metal ion- and particle-induced activation of the inflammasome in human macrophages provides evidence of a novel pathway of implant debris-induced inflammation, where contact with implant debris is sensed and transduced by macrophages into a proinflammatory response. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27: 847,854, 2009 [source] Hyalgan® has a dose-dependent differential effect on macrophage proliferation and cell deathJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 4 2003Kyle M. Sheehan Abstract The intra-articular injection of high molecular weight hyaluronic acid (HA) has been reported to be an effective treatment for pain of osteoarthritis of the knee. However, the mechanism by which HA exerts its effect is unknown. To explore HA's influence on the growth of U937 human macrophages, cells were incubated for 168 h with three concentrations, 1, 0.1 and 0.01 mg/mL, of Hyalgan®, a high molecular weight HA preparation. At 24-h increments, the cells were examined for proliferation, cell cycle distribution as well as the number of apoptotic and dead cells. Exposing macrophages to 1 mg/mL Hyalgan® significantly reduced the rate of cellular proliferation and altered the cell cycle distribution to yield decreased proportions of G0/G1 cells but increased S and G2/M cells. Concomitantly, a 10-fold increase in apoptotic cells and a 12-fold increase in dead cells were observed. The population doubling time (PDT) for cells treated with 1.0 mg/mL Hyalgan® increased from 23.6 to 52.9 h. By contrast, the two lower Hyalgan® concentrations significantly promoted macrophage proliferation in a dose-dependent manner. They also increased the proportion of G2/M cells, but had no effect on the number of apoptotic or dead cells. The PDTs of 21.5 and 22.2 h were less than the control time of 23.6 h. These results demonstrate that Hyalgan® concentrations have a differential effect on macrophage growth dynamics and suggest an anti-inflammatory effect at high HA concentrations. © 2003 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved. [source] Non-opsonic phagocytosis of homologous non-toxigenic and toxigenic Corynebacterium diphtheriae strains by human U-937 macrophagesMICROBIOLOGY AND IMMUNOLOGY, Issue 1 2010Cíntia Silva Dos Santos ABSTRACT As interactions between bacteria and macrophages dictate the outcome of most infectious diseases, analyses of molecular mechanisms of non-opsonic phagocytosis should lead to new approaches for the prevention of diphtheria and systemic Corynebacterium diphtheriae infections. The present study aimed to evaluate human macrophage,bacteria interactions in the absence of opsonin antibodies and the influence of the tox gene on this process. Homologous C. diphtheriae tox+ and tox, strains were evaluated for adhesion, entering and survival within U-937 human macrophages at different incubation periods. Higher numbers of viable bacteria associated with and internalized by macrophages were demonstrated for the tox+ strain. However, viable intracellular bacteria were detected at T-24 hr only for the tox, strain. Cytoskeletal inhibitors, cytochalasin E, genistein and colchicine, inhibited intracellular viability of both strains at different levels. Bacterial replication was evidenced at T-24 hr in supernatants of monolayers infected with the tox, strain. Host cell death and nuclear alterations were evidenced by the Trypan blue exclusion assay and DAPI fluorescence microscopy. ELISA of histone-associated DNA fragments allowed detection of apoptosis and necrosis induced by tox+ and tox, strains at T-1 hr and T-3 hr. In conclusion, human macrophages in the absence of opsonins may not be promptly effective at killing diphtheria bacilli. The presence of the tox gene influences the susceptibility of C. diphtheriae to human macrophages and the outcome of non-opsonic phagocytosis. C. diphtheriae strains exhibit strategies to survive within macrophages and to exert apoptosis and necrosis in human phagocytic cells, independent of the tox gene. [source] Characterization of a Leishmania stage-specific mitochondrial membrane protein that enhances the activity of cytochrome c oxidase and its role in virulenceMOLECULAR MICROBIOLOGY, Issue 2 2010Ranadhir Dey Summary Leishmaniasis is caused by the dimorphic protozoan parasite Leishmania. Differentiation of the insect form, promastigotes, to the vertebrate form, amastigotes, and survival inside the vertebrate host accompanies a drastic metabolic shift. We describe a gene first identified in amastigotes that is essential for survival inside the host. Gene expression analysis identified a 27 kDa protein-encoding gene (Ldp27) that was more abundantly expressed in amastigotes and metacyclic promastigotes than in procyclic promastigotes. Immunofluorescence and biochemical analysis revealed that Ldp27 is a mitochondrial membrane protein. Co-immunoprecipitation using antibodies to the cytochrome c oxidase (COX) complex, present in the inner mitochondrial membrane, placed the p27 protein in the COX complex. Ldp27 gene-deleted parasites (Ldp27,/,) showed significantly less COX activity and ATP synthesis than wild type in intracellular amastigotes. Moreover, the Ldp27,/, parasites were less virulent both in human macrophages and in BALB/c mice. These results demonstrate that Ldp27 is an important component of an active COX complex enhancing oxidative phosphorylation specifically in infectious metacyclics and amastigotes and promoting parasite survival in the host. Thus, Ldp27 can be explored as a potential drug target and parasites devoid of the p27 gene could be considered as a live attenuated vaccine candidate against visceral leishmaniasis. [source] Quantification of Chlamydia pneumoniae in cultured human macrophages and HL cells: comparison of real-time PCR, immunofluorescence and ELISA methodsAPMIS, Issue 1 2010KARI POIKONEN Poikonen K, Lajunen T, Silvennoinen-Kassinen S, Leinonen M, Saikku P. Quantification of Chlamydia pneumoniae in cultured human macrophages and HL cells: comparison of real-time PCR, immunofluorescence and ELISA methods. APMIS 2010; 118: 45,8. Chlamydia pneumoniae is an intracellular gram-negative bacterium, which replicates only in eukaryotic cells. Quantification of C. pneumoniae in cell culture is needed when studying e.g. the effect of drugs or host cell factors on infectivity and replication. Conventionally, this has been performed by immunofluorescence staining and microscopic counting of chlamydial inclusions. However, this method is usable only if the cell numbers do not fluctuate in cell culture vials and the inclusions are uniform. In macrophages, inclusions are often aberrant, their sizes vary, and multiple inclusions are also seen. Therefore, methods are needed to quantify exact amounts of C. pneumoniae in cells. Here, we describe a new method based on the real-time PCR quantification of chlamydial genomes adjusted to the number of human genomes in cultures. In human epithelial (HL) cell cultures, the C. pneumoniae inclusion numbers and the ratio of C. pneumonia genomes/human genome (Cpn/Hum) correlated significantly (r = 0.978, p < 0.001); thus with HL cells, both methods are usable. However, in macrophage cultures, the correlation was weaker (r = 0.133, p = 0.036) and we recommend PCR quantification for exact measurements. [source] Anti,apolipoprotein A-1 IgG predicts major cardiovascular events in patients with rheumatoid arthritisARTHRITIS & RHEUMATISM, Issue 9 2010Nicolas Vuilleumier Objective To determine whether anti,apolipoprotein A-1 (anti,Apo A-1) IgG are associated with major cardiovascular events in patients with rheumatoid arthritis (RA). Methods We determined anti,Apo A-1 IgG levels and the concentrations of cytokines, oxidized low-density lipoprotein (LDL), and matrix metalloproteinase 1 (MMP-1) MMP-2, MMP-3, and MMP-9 in sera from 133 patients with RA who did not have cardiovascular disease at baseline, all of whom were longitudinally followed up over a median period of 9 years. A major cardiovascular event was defined as a fatal or nonfatal stroke or acute coronary syndrome. The proinflammatory effects of anti,Apo A-1 IgG were assessed on human macrophages in vitro. Results During followup, the overall incidence of major cardiovascular events was 15% (20 of 133 patients). At baseline, anti,Apo A-1 IgG positivity was 17% and was associated with a higher incidence of major cardiovascular events (adjusted hazard ratio 4.2, 95% confidence interval 1.5,12.1). Patients who experienced a subsequent major cardiovascular event had higher circulating levels of anti,Apo A-1 IgG at baseline compared with those who did not have a major cardiovascular event. Receiver operating curve analysis showed that anti,Apo A-1 IgG was the strongest of all tested biomarkers for the prediction of a subsequent major cardiovascular event, with an area under the curve value of 0.73 (P = 0.0008). At the predefined and previously validated cutoff levels, the specificity and sensitivity of anti,Apo A-1 IgG to predict major cardiovascular events were 50% and 90%, respectively. Anti,Apo A-1 IgG positivity was associated with higher median circulating levels of interleukin-8 (IL-8), oxidized LDL, and MMP-9 and higher proMMP-9 activity as assessed by zymography. On human macrophages, anti,Apo A-1 IgG induced a significant dose-dependent increase in IL-8 and MMP-9 levels and proMMP-9 activity. Conclusion Anti,Apo A-1 IgG is an independent predictor of major cardiovascular events in RA, possibly by affecting vulnerability to atherosclerotic plaque. [source] Fluoxetine and citalopram exhibit potent antiinflammatory activity in human and murine models of rheumatoid arthritis and inhibit toll-like receptorsARTHRITIS & RHEUMATISM, Issue 3 2010Sandra Sacre Objective Selective serotonin reuptake inhibitors (SSRIs), in addition to their antidepressant effects, have been reported to have antiinflammatory effects. The aim of this study was to assess the antiarthritic potential of 2 SSRIs, fluoxetine and citalopram, in murine collagen-induced arthritis (CIA) and in a human ex vivo disease model of rheumatoid arthritis (RA). Methods Following therapeutic administration of SSRIs, paw swelling was assessed and clinical scores were determined daily in DBA/1 mice with CIA. Joint architecture was examined histologically at the end of the treatment period. Cultures of human RA synovial membranes were treated with SSRIs, and cytokine production was measured. Toll-like receptor (TLR) function was examined in murine and human macrophages, human B cells, and human fibroblast-like synovial cells treated with SSRIs. Results Both SSRIs significantly inhibited disease progression in mice with CIA, with fluoxetine showing the greatest degree of efficacy at the clinical and histologic levels. In addition, both drugs significantly inhibited the spontaneous production of tumor necrosis factor, interleukin-6, and interferon-,,inducible protein 10 in human RA synovial membrane cultures. Fluoxetine and citalopram treatment also inhibited the signaling of TLRs 3, 7, 8, and 9, providing a potential mechanism for their antiinflammatory action. Conclusion Fluoxetine and citalopram treatment selectively inhibit endosomal TLR signaling, ameliorate disease in CIA, and suppress inflammatory cytokine production in human RA tissue. These data highlight the antiarthritic potential of the SSRI drug family and provide further evidence of the involvement of TLRs in the pathogenesis of RA. The SSRIs may provide a template for potential antiarthritic drug development. [source] Long,term culture of multibacillary leprosy macrophages isolated from skin lesions: a new model to study Mycobacterium leprae,human cell interactionBRITISH JOURNAL OF DERMATOLOGY, Issue 2 2007D.F. Moura Summary Background, Leprosy is characterized by a disease spectrum having two polar clinical forms dependent on the presence or not of cell-mediated immunity. In the tuberculoid forms, granuloma-activated macrophages kill Mycobacterium leprae in conjunction with a Th1 response while, in multibacillary (MB) lesions, M. leprae nonactivated macrophages infiltrate the nerves and internal organs together with a Th2 response. The functional properties and activation pathways of macrophages isolated from patients with MB leprosy remain only partially understood. Objectives, To establish an ex vivo methodology capable of evaluating the activation pathways, grade and fate of cultured macrophages isolated from MB lesions. Methods, Skin biopsies from patients with borderline tuberculoid, bordeline lepromatous and lepromatous leprosy (LL) were characterized by immunohistochemistry and transcriptional analysis. To isolate inflammatory cells, a portion of the samples was submitted to enzymatic digestion. These same cells, maintained in culture for a minimum 7-day period, were characterized morphologically and via flow cytometry at different culture time points. Cytokine [interferon (IFN)-,, tumour necrosis factor (TNF)-, and interleukin (IL)-10] mRNA levels were quantified by real-time polymerase chain reaction and protein secretion in the culture supernatants was measured by enzyme-linked immunosorbent assay and the nitric oxide levels by Griess reagent. Results, RNA expression in tuberculoid and MB lesions showed the profile expected of characteristic Th1 and Th2 responses, respectively. The inflammatory cells in all biopsies were successfully isolated. Although the number of cells varied between biopsies, it was highest in LL biopsies. The frequency of isolated CD14+ and CD3+ cells measured by flow cytometry correlated with the percentages of macrophages and lymphocytes in the lesions. Throughout the culture period, CD68+ macrophages showed morphological changes. A progressive increase in cell number and reduction of infected cells were perceptible in the cultures. In contrast to the biopsies, TNF-,, IFN-, and IL-10 expression in the tuberculoid and MB leprosy cells in 24-h culture and the cytokine levels in the supernatants did not differ significantly. During the culture period, cytokine expression in the MB cells progressively declined, whereas, from days 1 to 7, nitrite levels progressively increased. After day 40, the remaining macrophages were able to ingest fluorescein isothiocyanate-labelled M. leprae. These data need to be confirmed. Conclusions, This study confirmed the feasibility of obtaining ex vivo macrophages from leprosy lesions and keeping them in long-term culture. This procedure may open new pathways to studying the interaction between M. leprae and human macrophages, which might, in turn, lead to the development of therapeutic tools capable of overcoming the specific anergy found in patients with MB leprosy. [source] Serotonin decreases HIV-1 replication in primary cultures of human macrophages through 5-HT1A receptorsBRITISH JOURNAL OF PHARMACOLOGY, Issue 1 2008B Manéglier Background and purpose: 5-HT (serotonin) is known to be involved in neuroinflammation and immunoregulation. The human immunodeficiency virus (HIV) targets cells such as monocytes/macrophages, which colocalize with 5-HT-releasing cell types, mostly platelets. In this study, we investigated the effects of 5-HT on HIV-1-infected macrophages in vitro. Experimental approach: Human macrophages cultured in serum-free medium were treated over 7 days with 5-HT at three concentrations (0.01, 1 and 100 ,M) with or without agonists and antagonists of 5-HT1A and 5-HT2 receptors. After 7 days of treatment, macrophages were infected with HIV-1/Ba-L and virus replication was monitored over 16 days and expression of proviral HIV DNA was investigated by PCR after 24 h of infection. Cell surface expression of HIV-1/Ba-L receptor (CD4) and coreceptor (CCR5) was investigated by flow cytometry. The CCR5 ligand, macrophage inflammatory protein-1, (MIP-1,), was quantified by ELISA in cell culture supernatants and MIP-1, mRNA expression was assessed by reverse transcriptase-PCR. Key results:In vitro, 5-HT downregulated the membranous expression of CCR5 and led to a decrease of HIV-1 infection, probably through its action on 5-HT1A receptors. 5-HT (100 ,M) was also able to induce overexpression of MIP-1, mRNA leading to an increase of MIP-1, secretion by human macrophages. Conclusions and implications: The effects of 5-HT on HIV infection could be a consequence of the increase in MIP-1, concentrations and/or CCR5 receptor downregulation. These results suggest that 5-HT can inhibit the replication of HIV-1 in primary culture of human macrophages through its action on 5-HT1A receptors. [source] Macrophage Stimulating Protein (MSP) evokes superoxide anion production by human macrophages of different originBRITISH JOURNAL OF PHARMACOLOGY, Issue 6 2001Sandra Brunelleschi Macrophage Stimulating Protein (MSP), a serum factor related to Hepatocyte Growth Factor, was originally discovered to stimulate chemotaxis of murine resident peritoneal macrophages. MSP is the ligand for Ron, a member of the Met subfamily of tyrosine kinase receptors. The effects of MSP on human macrophages and the role played in human pathophysiology have long been elusive. We show here that human recombinant MSP (hrMSP) evokes a dose-dependent superoxide anion production in human alveolar and peritoneal macrophages as well as in monocyte-derived macrophages, but not in circulating human monocytes. Consistently, the mature Ron protein is expressed by the MSP responsive cells but not by the unresponsive monocytes. The respiratory burst evoked by hrMSP is quantitatively higher than the one induced by N-formylmethionyl-leucyl-phenylalanine and similar to phorbol myristate acetate-evoked one. To investigate the mechanisms involved in NADPH oxidase activation, leading to superoxide anion production, different signal transduction inhibitors were used. By using the non selective tyrosine kinase inhibitor genistein, the selective c-Src inhibitor PP1, the tyrosine phosphatase inhibitor sodium orthovanadate, the phosphatidylinositol 3-kinase inhibitor wortmannin, the p38 inhibitor SB203580, the MEK inhibitor PD098059, we demonstrate that hrMSP-evoked superoxide production is mediated by tyrosine kinase activity, requires the activation of Src but not of PI 3-kinase. We also show that MAP kinase and p38 signalling pathways are involved. These results clearly indicate that hrMSP induces the respiratory burst in human macrophages but not in monocytes, suggesting for the MSP/Ron complex a role of activator as well as of possible marker for human mature macrophages. British Journal of Pharmacology (2001) 134, 1285,1295; doi:10.1038/sj.bjp.0704356 [source] Modulation of biogenesis of the Francisella tularensis subsp. novicida -containing phagosome in quiescent human macrophages and its maturation into a phagolysosome upon activation by IFN-,CELLULAR MICROBIOLOGY, Issue 9 2007Marina Santic No abstract is available for this article. [source] Coronin is involved in uptake of Mycobacterium bovis BCG in human macrophages but not in phagosome maintenanceCELLULAR MICROBIOLOGY, Issue 12 2001Stephanie Schüller By applying density gradient electrophoresis (DGE) to human macrophages infected with Mycobacterium bovis BCG, we were able to separate three different bacterial fractions representing arrested phagosomes, phagolysosomes and mycobacterial clumps. After further purification of the phagosomal population, we found that isolated phagosomes containing live BCG were arrested in maturation as they exhibited only low amounts of the lysosomal glycoprotein LAMP-1 and processing of the lysosomal hydrolase cathepsin D was blocked. In addition, low amounts of MHC class I and class II molecules and the absence of HLA-DM suggest sequestration of mycobacterial phagosomes from antigen-processing pathways. We further investigated the involvement of the actin-binding protein coronin in intracellular survival of mycobacteria and showed that human coronin, as well as F-actin, were associated with early stages of mycobacterial phagocytosis but not with phagosome maintenance. Therefore, we conclude that the unique DGE migration pattern of arrested phagosomes is not as a result of retention of coronin, but that there are other proteins or lipids responsible for the block in maturation in human macrophages. [source] Both Fc, and complement receptors mediate transfer of immune complexes from erythrocytes to human macrophages under physiological flow conditions in vitroCLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 1 2006A. L. Hepburn Summary Abnormal clearance by the mononuclear phagocytic system of immune complexes (IC) is important in the pathogenesis of systemic lupus erythematosus (SLE). We have developed an in vitro model to investigate the cellular mechanisms involved in the transfer of soluble IC from erythrocytes to human macrophages under physiological flow conditions. In this assay, erythrocytes bearing fluorescently labelled IC are perfused over monolayers of human monocytes or monocyte-derived macrophages in a parallel-plate flow chamber, and transfer quantified using confocal microscopy and flow cytometry. Using aggregated human IgG as a model IC, we have been able to demonstrate transfer of IC from erythrocytes to macrophages. Blocking studies with specific neutralizing antibodies have shown that both complement and Fc, receptors are required for IC transfer. Blockade of CR4 (,x,2 integrin), Fc,RIIa or Fc,RIII reduced transfer, while anti-CR3 (,m,2 integrin) had no effect. Blockade of CR3, Fc,RIIa or Fc,RIII also reduced the number of adhesive interactions between fluorescently labelled IC-bearing erythrocytes and macrophage monolayers. Taken together with the transfer data, this suggests differing roles for these receptors in the human IC transfer reaction that includes an adhesive function which facilitates IC processing by mononuclear phagocytes. Finally, a functional effect of the Fc,RIIa R131/H131 polymorphism, important in susceptibility to SLE, has also been demonstrated using this model. Uptake of IgG2 but not IgG1 -containing soluble IC was reduced by macrophages from individuals homozygous for the R131 allelic variant of the receptor. [source] Tribble 3, a novel oxidized low-density lipoprotein-inducible gene, is induced via the activating transcription factor 4,C/EBP homologous protein pathwayCLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 1 2010Yuan-Yuan Shang Summary 1.,C/EBP homologueueueous protein (CHOP), an endoplasmic reticulum (ER) stress-inducible protein, has a critical role in regulation of the cell cycle and apoptosis by forming heterodimers with other C/EBP proteins. However, how CHOP function is regulated remains to be determined. The human homologue of Drosophila tribbles (TRIB3) is associated with CHOP and is upregulated by oxidized low-density lipoprotein (ox-LDL). The aim of the present study was to investigate the role of CHOP in ox-LDL-induced TRIB3 expression in macrophages. 2.,Human monocyte-derived macrophages were treated with various concentrations of ox-LDL (0, 2.5, 5, 10, 25 and 50 ,g/mL) or 2 ,g/mL tunicamycin for 0, 4, 8, 16, 24 and 48 h or were transfected with CHOP or TRIB3 expression plasmid and TRIB3 targeting short interference RNA (siRNA). The expression of CHOP and activating transcription factor 4 (ATF4) mRNA in treated cells was detected by quantitative real-time polymerase chain reaction (PCR). 3.,The expression of CHOP and ATF4 mRNA increased with increasing concentrations of ox-LDL and duration of time. The ox-LDL-induced expression of TRIB3 mRNA was upregulated later than the expression of CHOP and ATF4 mRNA. Overexpression of CHOP increased the mRNA expression of TRIB3, which was further increased in CHOP-overexpressing macrophages treated with ox-LDL. Overexpression of TRIB3 suppressed the expression of CHOP, whereas TRIB3 silencing increased CHOP expression following ox-LDL stimulation by a negative feedback mechanism. 4.,In conculsion, the expression of ATF4 and CHOP is upregulated by ox-LDL in a dose- and time-dependent manner in naturally differentiated human macrophages. Oxidized LDL induces TRIB3 expression via an ATF4/CHOP-dependent ER stress pathway. [source] In vitro effects of cefotaxime and ceftriaxone on Salmonella typhi within human monocyte-derived macrophagesCLINICAL MICROBIOLOGY AND INFECTION, Issue 12 2002B. Ekinci The main objective of this in vitro study was to assess the effects of cefotaxime and ceftriaxone in killing Salmonella typhi in infected human macrophages. Human monocyte-derived macrophages isolated from peripheral blood of human volunteers were cultured in vitro for macrophage differentiation, and subsequently infected with S. typhi strains (a clinical isolate and a standard strain TA-42) at a cell ratio of 10 : 1. MICs of cefotaxime and ceftriaxone were determined by broth microdilution, and the antibiotics were included in the culture medium at one and five times their MIC values. Samples of cell culture medium taken at 0, 3, 6 and 24 h of incubation were cultured for growth of S. typhi on nutrient agar. Gentamicin (10 mg/L) was included in each well except for the control wells, in order to prevent growth of extracellular S. typhi. Both antibiotics showed good in vitro antibacterial effects against S. typhi strains. There were no statistically significant differences between the extracellular and intracellular effects of antibiotics with regard to elimination of the bacteria. Cefotaxime and ceftriaxone are highly effective against extracellular bacterial growth. The results of our in vitro experiments suggest that cefotaxime and ceftriaxone might also be used clinically against susceptible intracellular pathogens such as S. typhi. [source] A model predicting delivery of saquinavir in nanoparticles to human monocyte/macrophage (Mo/Mac) cellsBIOTECHNOLOGY & BIOENGINEERING, Issue 5 2008D. Ece Gamsiz Abstract Modeling the influence of a technology such as nanoparticle systems on drug delivery is beneficial in rational formulation design. While there are many studies showing drug delivery enhancement by nanoparticles, the literature provides little guidance regarding when nanoparticles are useful for delivery of a given drug. A model was developed predicting intracellular drug concentration in cultured cells dosed with nanoparticles. The model considered drug release from nanoparticles as well as drug and nanoparticle uptake by the cells as the key system processes. Mathematical expressions for these key processes were determined using experiments in which each process occurred in isolation. In these experiments, intracellular delivery of saquinavir, a low solubility drug dosed as a formulation of poly(ethylene oxide)-modified poly(epsilon- caprolactone) (PEO,PCL) nanoparticles, was studied in THP-1 human monocyte/macrophage (Mo/Mac) cells. The model accurately predicted the enhancement in intracellular concentration when drug was administered in nanoparticles compared to aqueous solution. This simple model highlights the importance of relative kinetics of nanoparticle uptake and drug release in determining overall enhancement of intracellular drug concentration when dosing with nanoparticles. Biotechnol. Bioeng. © 2008 Wiley Periodicals, Inc. [source] |