Home About us Contact | |||
Human Liver Tissue (human + liver_tissue)
Selected AbstractsNF,B, cytokines, TLR 3 and 7 expression in human end-stage HCV and alcoholic liver diseaseEUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 7 2010Peter Stärkel Eur J Clin Invest 2010; 40 (7): 575,584 Abstract Background/aims, Conflicting observations exist concerning the role of nuclear factor kappa B (NF,B) in alcoholic liver disease (ALD) in animal models. To date no studies have examined this aspect in human liver tissue. We here assessed cytokines and toll-like receptors (TLRs) expressions in conjunction with NF,B activation in non-active end-stage human ALD compared with normal livers and hepatitis C virus (HCV) related end-stage disease. Methods, mRNA and protein expression were examined by quantitative PCR and Western blotting, DNA-binding by electrophoretic mobility shift assays and NF,B sub-cellular localization by immunofluorescent staining of livers. Results, NF,B mRNA and protein expression as well as strong DNA-binding were preserved in ALD but significantly down-regulated in HCV compared with normal livers. P50 immunofluorescence was found in hepatocytes and bile ducts in ALD and normal livers, whereas a shift was observed in p65 staining from non-parenchymal cells in normal livers to hepatocytes in ALD. NF,B responsive genes mRNA levels IkB, and interleukin 6 were significantly higher in ALD compared with HCV. Tumour necrosis factor alpha (TNF,), TLRs 3 and 7 mRNA were up-regulated in ALD and HCV compared with normal liver with TNF, and TLR7 being the highest in HCV. Strong induction of interferon beta was found in HCV but not in ALD or normal liver tissue. Conclusions, Persistent NF,B activation together with high pro-inflammatory cytokine expression and upregulation of TLR3 and TLR7 is associated with end-stage ALD in humans and could contribute to disease progression even in absence of alcohol intake. [source] Oxidative damage is increased in human liver tissue adjacent to hepatocellular carcinomaHEPATOLOGY, Issue 6 2004Christoph Jüngst Accumulation of genetic alterations in hepatocarcinogenesis is closely associated with chronic inflammatory liver disease. 8-oxo-2,-deoxyguanosine (8-oxo-dG), the major promutagenic DNA adduct caused by reactive oxygen species (ROS), leads to G:C , T:A transversions. These lesions can be enzymatically repaired mainly by human MutT homolog 1 (hMTH1), human 8-oxo-guanine DNA glycosylase (hOGG1) and human MutY homolog (hMYH). The aim of this study was to evaluate the extent of oxidative damage and its dependence on the cellular antioxidative capacity and the expression of specific DNA repair enzymes in tumor (tu) and corresponding adjacent nontumor (ntu) liver tissue of 23 patients with histologically confirmed hepatocellular carcinoma. 8-oxo-dG levels, as detected by high-pressure liquid chromatography with electrochemical detection, were significantly (P = .003) elevated in ntu tissue (median, 129 fmol/,g DNA) as compared to tu tissue (median, 52 fmol/,g DNA), and were closely associated with inflammatory infiltration. In ntu tissue, the hepatic iron concentration and malondialdehyde levels were significantly (P = .001) higher as compared to tu tissue. Glutathione content, glutathione peroxidase activity and manganese superoxide dismutase messenger RNA (mRNA) expression did not show statistical differences between ntu and tu tissue. Real-time reverse transcription polymerase chain reaction revealed in tu tissue significantly (P = .014) higher hMTH1 mRNA expression compared to ntu tissue. In contrast, hMYH mRNA expression was significantly (P < .05) higher in ntu tissue. No difference in hOGG1 mRNA expression was seen between tu and ntu. In conclusion, these data suggest that ROS generated by chronic inflammation contribute to human hepatocarcinogenesis. The role of DNA repair enzymes appears to be of reactive rather than causative manner. (HEPATOLOGY 2004;39:1663,1672.) [source] Large-scale phosphoproteome analysis of human liver tissue by enrichment and fractionation of phosphopeptides with strong anion exchange chromatographyPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 7 2008Guanghui Han Abstract The mixture of phosphopeptides enriched from proteome samples are very complex. To reduce the complexity it is necessary to fractionate the phosphopeptides. However, conventional enrichment methods typically only enrich phosphopeptides but not fractionate phosphopeptides. In this study, the application of strong anion exchange (SAX) chromatography for enrichment and fractionation of phosphopeptides was presented. It was found that phosphopeptides were highly enriched by SAX and majority of unmodified peptides did not bind onto SAX. Compared with Fe3+ immobilized metal affinity chromatography (Fe3+ -IMAC), almost double phosphopeptides were identified from the same sample when only one fraction was generated by SAX. SAX and Fe3+ -IMAC showed the complementarity in enrichment and identification of phosphopeptides. It was also demonstrated that SAX have the ability to fractionate phosphopeptides under gradient elution based on their different interaction with SAX adsorbent. SAX was further applied to enrich and fractionate phosphopeptides in tryptic digest of proteins extracted from human liver tissue adjacent to tumorous region for phosphoproteome profiling. This resulted in the highly confident identification of 274 phosphorylation sites from 305 unique phosphopeptides corresponding to 168 proteins at false discovery rate (FDR) of 0.96%. [source] Phosphoproteome analysis of human liver tissue by long-gradient nanoflow LC coupled with multiple stage MS analysisPROTEOMICS - CLINICAL APPLICATIONS, Issue 8-9 2010Guanghui Han This article was originally published in Electrophoresis 2010, 31, 1080,1089, DOI 10.1002/elps.200900493 [source] |