Home About us Contact | |||
Human Knee (human + knee)
Selected AbstractsTibio-femoral loading during human gait and stair climbingJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 3 2004William R. Taylor Abstract Surgical intervention of the knee joint routinely endeavors to recreate a physiologically normal joint loading environment. The loading conditions resulting from osteotomies, fracture treatment, ligament replacements, and arthroplasties of the knee are considered to have an impact on the long term clinical outcome; however, knowledge regarding in vivo loading conditions is limited. Using a previously validated musculoskeletal lower limb model, we predicted the tibio-femoral joint contact forces that occur in the human knee during the common daily activities of walking and stair climbing. The average resultant peak force during walking was 3.1 times body weight (BW) across four total hip arthroplasty patients. Inter-individual variations proved larger than the variation of forces for each patient repeating the same task. Forces through the knee were considerably larger during stair climbing than during walking: the average resultant peak force during stair climbing was 5.4 BW although peaks of up to 6.2 BW were calculated for one particular patient. Average anteroposterior peak shear components of 0.6 BW were determined during walking and 1.3 BW during stair climbing. These results confirm both the joint contact forces reported in the literature and the importance of muscular activity in creating high forces across the joint. The magnitudes of these forces, specifically in shear, have implications for all forms of surgical intervention in the knee. The data demonstrate that high contact and shear forces are generated during weight bearing combined with knee flexion angles greater than approximately 15°. Clinically, the conditions that produce these larger contact forces should be avoided during post-operative rehabilitation. © 2003 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved. [source] Is the circumferential tensile modulus within a human medial meniscus affected by the test sample location and cross-sectional area?JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 6 2000Kate Lechner Quantifying the material properties of the human menisci is paramount to understanding their biomechanical functions within the knee. One important intrinsic material property governing the biomechanical functions of the meniscus is the circumferential tensile modulus. The purpose of this study was to determine if the circumferential tensile modulus of the human medial meniscus depends on the location and thickness of the sample tested. The following three hypotheses were tested: (a) the circumferential location (anterior, central, and posterior) does not significantly affect the tensile modulus, (b) the radial location (inner to outer) significantly affects the tensile modulus, and (c) the thicknes (cross-sectional area) significantly affects the tensile modulus. Test samples, whose length was oriented in parallel with the circumferential collagen fibers, were collected from different circumferential and radial locations throughout 30 human medial menisci. Samples of three different thicknesses (0.5, 1.5, and 3.0 mm) were taken from three equal groups of 10 menisci (i.e., one thickness per group). The circumferential tensile modulus was measured under quasi-statc loading. Statistical analysis showed no significant effect of the circumferential or radial location of the sample on the circumferential tensile modulus. This indicates that an overall circumferential tensile modulus may be calculated for the human medial meniscus by averaging the values determined at the various locations. However, the thickness of the test sample had a significant effect on the measured circumferential tensile modulus: the modulus varied inversely with the thickness. Thus, moduli determined from test samples that are too small in cross-sectional area overestimate the effective modulus of the tissue on the whole, and the cross-sectional area of the sample must be considered when determining a representative circumferential tensile modulus for the medial meniscus in a human knee. [source] Mechanical injury potentiates proteoglycan catabolism induced by interleukin-6 with soluble interleukin-6 receptor and tumor necrosis factor , in immature bovine and adult human articular cartilageARTHRITIS & RHEUMATISM, Issue 10 2009Yihong Sui Objective Traumatic joint injury can damage cartilage and release inflammatory cytokines from adjacent joint tissue. The present study was undertaken to study the combined effects of compression injury, tumor necrosis factor , (TNF,), and interleukin-6 (IL-6) and its soluble receptor (sIL-6R) on immature bovine and adult human knee and ankle cartilage, using an in vitro model, and to test the hypothesis that endogenous IL-6 plays a role in proteoglycan loss caused by a combination of injury and TNF,. Methods Injured or uninjured cartilage disks were incubated with or without TNF, and/or IL-6/sIL-6R. Additional samples were preincubated with an IL-6,blocking antibody Fab fragment and subjected to injury and TNF, treatment. Treatment effects were assessed by histologic analysis, measurement of glycosaminoglycan (GAG) loss, Western blot to determine proteoglycan degradation, zymography, radiolabeling to determine chondrocyte biosynthesis, and Western blot and enzyme-linked immunosorbent assay to determine chondrocyte production of IL-6. Results In bovine cartilage samples, injury combined with TNF, and IL-6/sIL-6R exposure caused the most severe GAG loss. Findings in human knee and ankle cartilage were strikingly similar to those in bovine samples, although in human ankle tissue, the GAG loss was less severe than that observed in human knee tissue. Without exogenous IL-6/sIL-6R, injury plus TNF, exposure up-regulated chondrocyte production of IL-6, but incubation with the IL-6,blocking Fab significantly reduced proteoglycan degradation. Conclusion Our findings indicate that mechanical injury potentiates the catabolic effects of TNF, and IL-6/sIL-6R in causing proteoglycan degradation in human and bovine cartilage. The temporal and spatial evolution of degradation suggests the importance of transport of biomolecules, which may be altered by overload injury. The catabolic effects of injury plus TNF, appeared partly due to endogenous IL-6, since GAG loss was partially abrogated by an IL-6,blocking Fab. [source] Calculation of electric fields induced in the human knee by a coil applicatorBIOELECTROMAGNETICS, Issue 4 2001D.N. Buechler Abstract Calculations are presented of the induced electric fields and current densities in the cartilage of the knee produced by a coil applicator developed for applying pulsed magnetic fields to osteoarthritic knees. This applicator produces a sawtooth-like magnetic field waveform composed of a series of 260-,s pulses with a peak to peak magnitude of approximately 0.12,mT in the cartilage region. The simulations were performed using a recently developed 3 dimensional finite difference frequency domain technique for solving Maxwell's equations with an equivalent circuit model. The tissue model was obtained from the anatomically segmented human body model of Gandhi. The temporal peak electric field magnitude was found to be ,153,mV/m, averaged within the medial cartilage of the knee for the typical dB/dt excitation levels of this coil. The technique can be extended to analyze other excitation waveforms and applicator designs. Bioelectromagnetics 22:224,231, 2001. © 2001 Wiley-Liss, Inc. [source] Anatomic basis of perforator flaps of medial vastus muscleMICROSURGERY, Issue 1 2008Heping Zheng Ph.D. The purpose of this study was to elucidate anatomical features of perforating branch flaps based on the muscular branches of the medial vastus muscle and to seek a new, applicable technique that could be used in repairing soft tissue defects around human knees. In this study, the origin, the course, the branches, the distribution, and the distal anastomosis of the muscular branch of the medial vastus muscle were observed in 30 sides of adult cadaveric lower limb specimens with the adductor tubercle, the patella midpoint, and the inguinal ligament midpoint as the observation markers. The specimens had been perfused arterially with red gelatin before they were supplied. It was observed that the femoral artery gave constant muscular branches into the medial vastus muscle at the tip of the femoral triangle. The artery entered the muscle via the hilum and ran laterally downwards along the muscular bundle until it reached the lateral patella to anastomose with the arterial circle around the bone. Along its course, it also gave 1,3 (1/77%) musculocutaneous perforating branches (0.5,0.9 mm in diameter). It then extended vertically through the medial vastus muscle into the deep fascia and ran superficially to the overlying skin of the muscle. A flap based on the perforating branch of the medial vastus muscle could be harvested at a size of about 8.5 cm × 15.0 cm and might be transferred retrograde to repair the soft tissue defect around the knee. © 2007 Wiley-Liss, Inc. Microsurgery, 2008. [source] |