Home About us Contact | |||
Human HCC Cells (human + hcc_cell)
Selected AbstractsMechanisms of cell death induced by suicide genes encoding purine nucleoside phosphorylase and thymidine kinase in human hepatocellular carcinoma cells in vitroHEPATOLOGY, Issue 3 2001Tim U. Krohne For gene therapy of hepatocellular carcinoma (HCC), the Escherichia coli purine nucleoside phosphorylase (PNP)/fludarabine suicide gene system may be more useful than the herpes simplex virus thymidine kinase/ganciclovir (HSV-tk/GCV) system as a result of a stronger bystander effect. To analyze the molecular mechanisms involved in PNP/fludarabine-mediated cell death in human HCC cells in comparison with HSV-tk/GCV, we transduced human HCC cells of the cell lines, HepG2 and Hep3B, with PNP or HSV-tk using adenoviral vectors, followed by prodrug incubation. Both systems predominantly induced apoptosis in HepG2 and Hep3B cells. PNP/fludarabine induced strong p53 accumulation and a more rapid onset of apoptosis in p53-positive HepG2 cells as compared with p53-negative Hep3B cells, but efficiency of tumor cell killing was similar in both cell lines. In contrast, HSV-tk/GCV,induced apoptosis was reduced in p53-negative Hep3B cells as compared with p53-positive HepG2 cells. HSV-tk/GCV, but not PNP/fludarabine, caused up-regulation of Fas in p53-positive HepG2 cells and of Fas ligand (FasL) in both HCC cell lines. These results demonstrate cell line,specific differences in response to treatment with PNP/fludarabine and HSV-tk/GCV, respectively, and indicate that PNP/fludarabine may be superior to HSV-tk/GCV for the treatment of human HCC because of its independence from p53 and the Fas/FasL system. (HEPATOLOGY 2001;34:511-518.) [source] Expression and role of Bcl-xL in human hepatocellular carcinomasHEPATOLOGY, Issue 1 2001Tetsuo Takehara Transformed hepatocytes survive various apoptotic insults during their growth in vivo. However, molecular mechanisms that inhibit apoptosis and support their survival are not well understood. In this study, we investigated the expression and role of Bcl-xL, an antiapoptotic member of the Bcl-2 family, in human hepatocellular carcinoma (HCC). The Bcl-xL protein was expressed in HepG2, Hep3B, and Huh7 human hepatoma cell lines at high levels, but none of these cells expressed Bcl-2. Down-modulation of Bcl-xL by antisense oligonucleotide activated apoptosis in HepG2 cells in response to cellular stresses induced by staurosporine treatment or by serum starvation. Ectopic expression of transcriptionally active p53 alone was not sufficient for the activation of apoptosis in p53 -null Hep3B cells, but apoptosis was induced when endogenous Bcl-xL was simultaneously inhibited by antisense oligonucleotide in these cells. Bcl-xL was expressed in all 20 surgically resected human HCC tissues when examined by Western blot analysis and immunohistochemistry, and levels of its expression were higher in a subset of HCC tissues than those of adjacent nontumor liver tissues or normal livers. We conclude that Bcl-xL expressed in human HCC cells inhibits apoptosis produced by various cellular stresses, such as staurosporine treatment, serum starvation, and p53 activation, and may play an important role in their survival. [source] Hepatitis B virus X protein upregulates expression of calpain small subunit 1 via nuclear facter-,B/p65 in hepatoma cellsJOURNAL OF MEDICAL VIROLOGY, Issue 6 2010Feng Zhang Abstract Hepatitis B virus (HBV) infection is closely correlated with the development of hepatocellular carcinoma (HCC), in which hepatitis B virus X protein (HBx) plays crucial roles. HBx is believed to be a multifunctional oncoprotein. It has been reported that the calpain small subunit 1 (Capn4) is upregulated in the HCC tissues and involved in the metastasis of HCC. Therefore, we suppose that HBx may promote hepatoma cell migration through Capn4. In the present study, we investigated the effect of HBx on regulating Capn4 expression in human HCC cells. Our data showed that HBx could increase promoter activity of Capn4 and upregulate the expression of Capn4 at the levels of mRNA and protein in human hepatoma HepG2 (or H7402) cells using luciferase reporter gene assay, real-time quantitative RT-PCR assay and Western blot analysis. While, the RNA interference targeting HBx mRNA was able to abolish the upregulation. Interestingly, we found that the inhibition of nuclear factor-,B (NF-,B) mediated by siRNA targeting NF-,B/p65 mRNA or PDTC (an inhibitor of NF-,B) could attenuate the upregulation of Capn4. While, HBx failed to increase the promoter activity of Capn4 in hepatoma cells when the putative NF-,B binding site of the Capn4 promoter was mutant, suggesting that NF-,B is involved in the activation of Capn4 mediated by HBx. In function, wound healing assay showed that HBx could significantly enhance the migration ability of HepG2 cells through upregulating Capn4. Thus, we conclude that HBx upregulate Capn4 through NF-,B/p65 to promote migration of hepatoma cells. J. Med. Virol. 82:920,928, 2010. © 2010 Wiley-Liss, Inc. [source] (,)-Epigallocatechin gallate suppresses the growth of human hepatocellular carcinoma cells by inhibiting activation of the vascular endothelial growth factor,vascular endothelial growth factor receptor axisCANCER SCIENCE, Issue 10 2009Yohei Shirakami The receptor tyrosine kinase vascular endothelial growth factor (VEGF) receptor (VEGFR) plays an important role in tumor angiogenesis of hepatocellular carcinoma (HCC). (,)-Epigallocatechin gallate (EGCG), the major biologically active component of green tea, inhibits growth in a variety of human cancer cells by inhibiting the activation of several types of receptor tyrosine kinases. In this study, we examined the effects of EGCG on the activity of the VEGF,VEGFR axis in human HCC cells. The levels of total and phosphorylated (i.e. activated) form of VEGFR-2 protein (p-VEGFR-2) were observed to increase in a series of human HCC cell lines in comparison to the Hc normal human hepatocytes. EGCG preferentially inhibited the growth of HuH7 HCC cells, which express constitutive activation of the VEGF,VEGFR axis, in comparison to Hc cells. Treatment of HuH7 cells with EGCG caused a time- and dose-dependent decrease in the expression of VEGFR-2 and p-VEGFR-2 proteins. The production of VEGF from HuH7 cells was reduced by treatment with EGCG. Drinking of EGCG significantly inhibited the growth of HuH7 xenografts in nude mice and this was associated with inhibition of the activation of VEGFR-2 and its related downstream signaling molecules, including ERK and Akt. EGCG drinking also decreased the expression of Bcl-xL protein and VEGF mRNA in the xenografts. These findings suggest that EGCG can exert, at least in part, its growth-inhibitive effect on HCC cells by inhibiting the VEGF,VEGFR axis. EGCG might therefore be useful in the treatment of HCC. (Cancer Sci 2009; 100: 1957,1962) [source] |