Human Femur (human + femur)

Distribution by Scientific Domains


Selected Abstracts


Trabecular Bone Tissue Strains in the Healthy and Osteoporotic Human Femur,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 10 2003
B Van Rietbergen
Quantitative information about bone tissue-level loading is essential for understanding bone mechanical behavior. We made microfinite element models of a healthy and osteoporotic human femur and found that tissue-level strains in the osteoporotic femoral head were 70% higher on average and less uniformly distributed than those in the healthy one. Introduction: Bone tissue stresses and strains in healthy load-adapted trabecular architectures should be distributed rather evenly, because no bone tissue is expected to be overloaded or unused. In this study, we evaluate this paradigm with the use of microfinite element (,FE) analyses to calculate tissue-level stresses and strains for the human femur. Our objectives were to quantify the strain distribution in the healthy femur, to investigate to what extent this distribution is affected by osteoporosis, to determine if osteoporotic bone is simply bone adapted to lower load levels, and to determine the "safety factor" for trabecular bone. Materials and Methods: ,FE models of a healthy and osteoporotic proximal femur were made from microcomputed tomography images. The models consisted of over 96 and 71 million elements for the healthy and osteoporotic femur, respectively, and represented their internal and external morphology in detail. Stresses and strains were calculated for each element and their distributions were calculated for a volume of interest (VOI) of trabecular bone in the femoral head. Results: The average tissue-level principal strain magnitude in the healthy VOI was 304 ± 185 microstrains and that in the osteoporotic VOI was 520 ± 355 microstrains. Calculated safety factors were 8.6 for the healthy and 4.9 for the osteoporotic femurs. After reducing the force applied to the osteoporotic model to 59%, the average strain compared with that of the healthy femur, but the SD was larger (208 microstrains). Conclusions: Strain magnitudes in the osteoporotic bone were much higher and less uniformly distributed than those in the healthy one. After simulated joint-load reduction, strain magnitudes in the osteoporotic femur were very similar to those in the healthy one, but their distribution is still wider and thus less favorable. [source]


Regional variation of intracortical porosity in the midshaft of the human femur: age and sex differences

JOURNAL OF ANATOMY, Issue 2 2005
C. David L. Thomas
Abstract This study investigated age and sex differences in patterns of porosity distribution in the midshaft of the human femur. Cross-sections were obtained from 168 individuals from a modern Australian population. The sample comprised 73 females and 95 males, aged between 20 and 97 years. Microradiographs were made of 100-µm sections and pore and bone areas were determined using image processing software. Initially the sample was divided by age: young (20,44 years), middle (45,64 years) and old (65+ years), but it was found that analysis on the basis of the ratio of medullary area to total subperiosteal area gave clearer results. The cortex was divided into three rings radially and into octants circumferentially and the porosity of each segment was calculated. Results showed that a pattern with raised porosity in the posterior and anterolateral regions, and with greater porosity in the inner parts of the cortex, becomes more pronounced with age. In males this pattern develops steadily; in females there are much greater differences between the middle and older groups than earlier in life. The patterns observed are consistent with progressive bone loss occurring along a neutral axis of the cortex where bending stress is lowest and the mechanical advantage of the bone is least. [source]


Trabecular Bone Tissue Strains in the Healthy and Osteoporotic Human Femur,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 10 2003
B Van Rietbergen
Quantitative information about bone tissue-level loading is essential for understanding bone mechanical behavior. We made microfinite element models of a healthy and osteoporotic human femur and found that tissue-level strains in the osteoporotic femoral head were 70% higher on average and less uniformly distributed than those in the healthy one. Introduction: Bone tissue stresses and strains in healthy load-adapted trabecular architectures should be distributed rather evenly, because no bone tissue is expected to be overloaded or unused. In this study, we evaluate this paradigm with the use of microfinite element (,FE) analyses to calculate tissue-level stresses and strains for the human femur. Our objectives were to quantify the strain distribution in the healthy femur, to investigate to what extent this distribution is affected by osteoporosis, to determine if osteoporotic bone is simply bone adapted to lower load levels, and to determine the "safety factor" for trabecular bone. Materials and Methods: ,FE models of a healthy and osteoporotic proximal femur were made from microcomputed tomography images. The models consisted of over 96 and 71 million elements for the healthy and osteoporotic femur, respectively, and represented their internal and external morphology in detail. Stresses and strains were calculated for each element and their distributions were calculated for a volume of interest (VOI) of trabecular bone in the femoral head. Results: The average tissue-level principal strain magnitude in the healthy VOI was 304 ± 185 microstrains and that in the osteoporotic VOI was 520 ± 355 microstrains. Calculated safety factors were 8.6 for the healthy and 4.9 for the osteoporotic femurs. After reducing the force applied to the osteoporotic model to 59%, the average strain compared with that of the healthy femur, but the SD was larger (208 microstrains). Conclusions: Strain magnitudes in the osteoporotic bone were much higher and less uniformly distributed than those in the healthy one. After simulated joint-load reduction, strain magnitudes in the osteoporotic femur were very similar to those in the healthy one, but their distribution is still wider and thus less favorable. [source]


Technical note: A new method for measuring long bone curvature using 3D landmarks and semi-landmarks

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 4 2010
Isabelle De Groote
Abstract Here we describe and evaluate a new method for quantifying long bone curvature using geometric morphometric and semi-landmark analysis of the human femur. The technique is compared with traditional ways of measuring subtense and point of maximum curvature using either coordinate calipers or projection onto graph paper. Of the traditional methods the graph paper method is more reliable than using coordinate calipers. Measurement error is consistently lower for measuring point of maximum curvature than for measuring subtense. The results warrant caution when comparing data collected by the different traditional methods. Landmark data collection proves reliable and has a low measurement error. However, measurement error increases with the number of semi-landmarks included in the analysis of curvature. Measurements of subtense can be estimated more reliably using 3D landmarks along the curve than using traditional techniques. We use equidistant semi-landmarks to quantify the curve because sliding the semi-landmarks masks the curvature signal. Principal components analysis of these equidistant semi-landmarks provides the added benefit of describing the shape of the curve. These results are promising for functional and forensic analysis of long bone curvature in modern human populations and in the fossil record. Am J Phys Anthropol, 2010. © 2010 Wiley-Liss, Inc. [source]