Home About us Contact | |||
Human Density (human + density)
Selected AbstractsStream communities across a rural,urban landscape gradientDIVERSITY AND DISTRIBUTIONS, Issue 4 2006Mark C. Urban ABSTRACT Rapid urbanization throughout the world is expected to cause extensive loss of biodiversity in the upcoming decades. Disturbances associated with urbanization frequently operate over multiple spatial scales such that local species extirpations have been attributed both to localized habitat degradation and to regional changes in land use. Urbanization also may shape stream communities by restricting species dispersal within and among stream reaches. In this patch-dynamics view, anthropogenic disturbances and isolation jointly reduce stream biodiversity in urbanizing landscapes. We evaluated predictions of stream invertebrate community composition and abundance based on variation in environmental conditions at five distinct spatial scales: stream habitats, reaches, riparian corridors and watersheds and their spatial location within the larger three-river basin. Despite strong associations between biodiversity loss and human density in this study, local stream habitat and stream reach conditions were poor predictors of community patterns. Instead, local community diversity and abundance were more accurately predicted by riparian vegetation and watershed landscape structure. Spatial coordinates associated with instream distances provided better predictions of stream communities than any of the environmental data sets. Together, results suggest that urbanization in the study region was associated with reduced stream invertebrate diversity through the alteration of landscape vegetation structure and patch connectivity. These findings suggest that maintaining and restoring watershed vegetation corridors in urban landscapes will aid efforts to conserve freshwater biodiversity. [source] Diversity of native and alien plant species on rubbish dumps: effects of dump age, environmental factors and toxicityDIVERSITY AND DISTRIBUTIONS, Issue 3 2003Antonín Py Abstract. The flora of 96 rubbish dumps consisting of organic, inorganic and industrial wastes was studied in the Czech Republic. Some dumps contained toxic substances (heavy metals, chlorethylenes, phenols, polychlorinated biphenyls, oil hydrocarbons and biogas). Statistically significant factors explaining the number and proportional representation of native plant species, archaeophytes (introduced before 1500) and neophytes (introduced later) were determined. In total, 588 species of vascular plants were recorded, with archaeophytes (133 species) over-represented and native species (322 species) and neophytes (133 species) under-represented compared to their proportions in the national flora. Minimum adequate models were used to determine the effects of several factors on species numbers and proportions, independent of other factors. Dump area, human density in the region and altitude (non-significant only in archaeophytes) were correlated positively with species numbers. Dump age, expressed as time since dump establishment, interacted with the dump toxicity; species numbers increased with dump age on non-toxic dumps, whereas on toxic dumps no increase in numbers was noted. For neophytes, dump toxicity also interacted with human density; the increase in numbers of neophytes with human density is more pronounced on toxic than on non-toxic dumps. The variables measured failed to explain observed differences in proportional representation of native species, archaeophytes and neophytes. This suggests that the occurrence of species growing in such extreme habitats is driven overwhelmingly by factors such as anthropogenic disturbance. A possible explanation for the positive effect of altitude on species numbers on dumps is that the effect of heating of the deposited substrate by microbiological processes, documented by previous studies, overrides the effect of altitude which was shown repeatedly to have a negative effect on species richness. Neophyte distribution is driven by an interplay of factors distinct from those influencing the distribution of native species, namely toxicity and human density (the latter we interpret as a surrogate for propagule pressure). Their distribution on studied dumps is more restricted than that of native taxa and archaeophytes, and they are more limited by toxic substrata; more intensive propagule pressure is required for their establishment at dumps with higher toxicity levels. [source] The coincidence of people and biodiversity in EuropeGLOBAL ECOLOGY, Issue 1 2003Miguel B. Araújo ABSTRACT A positive correlation between human population density and species richness has been recorded across the tropics. Here I investigate whether this correlation holds true for Europe. Analyses reveal a positive correlation between human population density and plant (rho = 0.505), mammal (rho = 0.471) and reptile and amphibian (rho = 0.556) species richness. The results are largely concordant with those obtained in similar studies for Africa. However, contrary to previous analyses, the correlation found between people and breeding bird species richness (rho = 0.186) was weak. Of three measures of endemism used, only combined European endemic species richness correlated with human density (rho = 0.437). Richness among combined restricted-range European endemics was not correlated (rho = 0.095) with human density, while richness among all combined restricted-range species was only weakly correlated with human density (rho = 0.167). The results partially support the idea of a correlation between people and biodiversity, although there are some important exceptions. Discussion of possible mechanisms underling the observed patterns is undertaken. [source] Influence of the spatial distribution of human hosts and large size containers on the dispersal of the mosquito Aedes aegypti within the first gonotrophic cycleMEDICAL AND VETERINARY ENTOMOLOGY, Issue 1 2010R. MACIEL-DE-FREITAS It is generally accepted that Aedes aegypti (L.) (Diptera: Culicidae) has a short dispersal capacity, and that displacement can be influenced by the availability of oviposition sites in the surroundings of emergence or release sites. In the present article, we observed the influence of spatial heterogeneity of large containers and human hosts on the cumulative flight direction of Ae. aegypti females during the first gonotrophic cycle, testing the hypothesis that they aggregate in resource-rich areas, i.e. where there are higher concentrations of large containers and/or humans per habitation. We analysed data from pupal surveys and mark-release-recapture experiments (non-blood-fed females were released) carried out in two dengue endemic neighbourhoods of Rio de Janeiro, Brazil: Tubiacanga (a suburb, with a human density of 337 inhabitants/ha) and Favela do Amorim (a slum, with a human density of 901 inhabitants/ha). In both areas, host-seeking females of three different release cohorts showed an overall non-uniform and extensive dispersal from their release point within 1,2 days post-release. At 4,5 days post-release, when many of the released females would be expected to be gravid, in Tubiacanga most mosquitoes were collected in areas with a relatively higher density of containers/premise, independently of the density of residents/house, whereas in Favela do Amorim, almost half of the captured mosquitoes were collected in relatively resource-poorer areas. Although Ae. aegypti dispersal patterns varied between sites, overall the distances travelled from the release point and the cumulative flight directions were correlated with the density of containers and hosts, more markedly in Tubiacanga than in Favela do Amorim. [source] Distribution and density of Callimico goeldii in the Department of Pando, BoliviaAMERICAN JOURNAL OF PRIMATOLOGY, Issue 3 2006Leila M. Porter Abstract A survey of the distribution and density of Callimico goeldii was conducted at five sites across northwestern Bolivia, in the Department of Pando. C. goeldii was found at two sites north of the Manuripi River, with high densities at one site located along the Acre River. Estimates of habitat availability at these sites suggest that C. goeldii reaches high densities in areas with low human density and well established and extensive bamboo forests. These results, when reviewed with those of prior studies, indicate that the patchy distribution of C. goeldii in Pando is a result of both riverine barriers and the availability of bamboo habitat. Am. J. Primatol. 68:235,243, 2006. © 2006 Wiley-Liss, Inc. [source] Effects of human,carnivore conflict on tiger (Panthera tigris) and prey populations in Lao PDRANIMAL CONSERVATION, Issue 4 2006A. Johnson Abstract Unique to South-east Asia, Lao People's Democratic Republic contains extensive habitat for tigers and their prey within a multiple-use protected area system covering 13% of the country. Although human population density is the lowest in the region, the impact of human occurrence in protected areas on tiger Panthera tigris and prey populations was unknown. We examined the effects of human,carnivore conflict on tiger and prey abundance and distribution in the Nam Et-Phou Louey National Protected Area on the Lao,Vietnam border. We conducted intensive camera-trap sampling of large carnivores and prey at varying levels of human population and monitored carnivore depredation of livestock across the protected area. The relative abundance of large ungulates was low throughout whereas that of small prey was significantly higher where human density was lower. The estimated tiger density for the sample area ranged from 0.2 to 0.7 per 100 km2. Tiger abundance was significantly lower where human population and disturbance were greater. Three factors, commercial poaching associated with livestock grazing followed by prey depletion and competition between large carnivores, are likely responsible for tiger abundance and distribution. Maintaining tigers in the country's protected areas will be dependent on the spatial separation of large carnivores and humans by modifying livestock husbandry practices and enforcing zoning. [source] |