Home About us Contact | |||
Human Cytochromes P450 (human + cytochrome_p450)
Terms modified by Human Cytochromes P450 Selected AbstractsEffect of zolpidem on human Cytochrome P450 activity, and on transport mediated by P-glycoproteinBIOPHARMACEUTICS AND DRUG DISPOSITION, Issue 9 2002Lisa L. von Moltke Abstract The influence of high concentrations of zolpidem (100 ,M, corresponding to approximately 200 times maximum therapeutic concentrations) on the activity of six human Cytochrome P450 (CYP) enzymes was evaluated in a model system using human liver microsomes. Zolpidem produced negligible or weak inhibition of human CYP1A2, 2B6, 2C9, 2C19, 2D6, and 3A. Transport of rhodamine 123, presumed to be mediated mainly by the energy-dependent efflux transport protein P-glycoprotein, was studied in a cell culture system using a human intestinal cell line. High concentrations of zolpidem (100 ,M), exceeding the usual therapeutic range by more than 100-fold, produced only modest impairment of rhodamine 123 transport. The findings indicate that zolpidem is very unlikely to cause clinical drug interactions attributable to impairment of CYP activity or P-gp mediated transport. Copyright © 2002 John Wiley & Sons, Ltd. [source] In vitro effects of tacrolimus on human cytochrome P450FUNDAMENTAL & CLINICAL PHARMACOLOGY, Issue 6 2002K. Lecointre Abstract Tacrolimus, a potent immunosuppressive drug, is known to be metabolized predominantly in the liver by cytochrome P450 3A (CYP3A). In order to determine the potential of tacrolimus to inhibit the metabolism of other drugs, we have investigated its inhibitory effects on specific cytochrome reactions. Specific substrates for the seven cytochromes (CYPs) 1A2, 2A6, 2C9, 2C19, 2D6, 2E1 and 3A4/5 were incubated with human hepatic microsome preparations with or without specific inhibitors or tacrolimus and the metabolites were detected by high-pressure liquid chromatography (HPLC) or fluorimetric methods. All the specific inhibitors reduced or abolished the specific CYP activity. Tacrolimus had no effect on any CYP at concentrations below 1 µm, while at higher concentrations it had a mild inhibitory effect on CYP3A4 and 3A5. These observations suggest that tacrolimus is unlikely to potentiate the effect of coadministered drugs through inhibition of their metabolism in the liver. [source] Inhibition of human cytochrome p450 1b1 further clarifies its role in the activation of dibenzo[a,l]pyrene in cells in cultureJOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 3 2007Brinda Mahadevan Abstract Metabolic activation and DNA adduct formation of the carcinogenic aromatic hydrocarbon dibenzo{a,l}pyrene (DBP) was investigated in human mammary carcinoma MCF-7 cells and human cytochrome P450 (CYP) 1B1-expressing Chinese hamster V79 cells in culture. It has been shown that DBP is metabolically activated to DNA-binding diol epoxides both in vitro and in vivo. To further establish the role of human CYP1B1 in the activation of DBP, both cell lines were cotreated with DBP and a selective chemical inhibitor of CYP1B1, 2,4,3, ,5,-tetramethoxy-stilbene (TMS). Results from DBP,DNA adduct analyses revealed the complete inhibition of DNA binding when cells were cotreated with DBP and TMS in comparison to DBP alone. Inactivation of CYP1B1 by TMS was also demonstrated through a decrease in the 7-ethoxyresorufin O -deethylase (EROD) activity in microsomes isolated from these cells. Emodin, 3-methyl-1,6,8-trihydroxyanthraquinone, an active ingredient of an herb, has been recently shown of being able to induce CYP1 gene expression. Examination of human CYP1B1 induction and EROD activity confirmed an increase in protein levels upon cotreatment with emodin and DBP. Despite increases in protein levels and enzyme activity, there was no significant change in DBP,DNA binding levels at very low substrate concentrations (17 nM). The data obtained in this study emphasize the central role of CYP1B1 in the activation of DBP in human cells in culture. © 2007 Wiley Periodicals, Inc. J Biochem Mol Toxicol 21:101,109, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20168 [source] Purification of citrus limonoids and their differential inhibitory effects on human cytochrome P450 enzymesJOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 9 2007Shibu M Poulose Abstract Recent studies demonstrated that citrus limonoids and flavonoids possess numerous health promoting properties. In the present study, glucosides of limonoids and flavonoids were purified from citrus molasses and limonoid aglycones from citrus seeds. Glucosides were separated on styrene (divinylbenzene), Q-sepharose resins with increasing concentration of sodium chloride. A pH-dependent cold precipitation was carried out for the isolation of naringin in large quantity. Major aglycones such as limonin and nomilin were isolated from seeds by direct crystallization and minor limonoids were purified by vacuum liquid chromatography. The structures of the isolated compounds were confirmed by NMR spectra. Individual limonoids were tested for O -dealkylase and hydroxylase activities of human cytochrome P450 (CYP) isoenzymes such as CYP1A2, CYP1B1, CYP3A4 and CYP19, using ethoxyresorufin, methoxyresorufin and dibenzylfluorescein as substrates. Partial to high inhibition of CYPs was observed in dose-dependent assays. Significant (P < 0.001) reductions in enzyme activities were observed with purified compounds above 2 µmol. Kinetic analyses indicated that limonin glucoside inhibited CYP19 competitively (IC50, 7.1 µ mol L,1), whereas Nomilinic acid glucoside inhibited it noncompetitively (IC50, 9.4 µ mol,1). Nomilinic acid glucoside was the most potent limonoid, with an overall IC50 of < 10 µ mol, for all the enzymes tested. The differential inhibition of CYPs can be ascribed to structural variations of the limonoid nucleus. Limonoid inhibition of key CYPs involved in carcinogenesis supports growing evidence that citrus limonoids act as anticancer agents. Copyright © 2007 Society of Chemical Industry [source] Contributions of human cytochrome P450 enzymes to glyburide metabolismBIOPHARMACEUTICS AND DRUG DISPOSITION, Issue 4 2010Lin Zhou Abstract Glyburide (GLB) is a widely used oral sulfonylurea for the treatment of gestational diabetes. The therapeutic use of GLB is often complicated by a substantial inter-individual variability in the pharmacokinetics and pharmacodynamics of the drug in human populations, which might be caused by inter-individual variations in factors such as GLB metabolism. Therefore, there has been a continued interest in identifying human cytochrome P450 (CYP) isoforms that play a major role in the metabolism of GLB. However, contrasting data are available in the present literature in this regard. The present study systematically investigated the contributions of various human CYP isoforms (CYP3A4, CYP3A5, CYP2C8, CYP2C9 and CYP2C19) to in vitro metabolism of GLB. GLB depletion and metabolite formation in human liver microsomes were most significantly inhibited by the CYP3A inhibitor ketoconazole compared with the inhibitors of other CYP isoforms. Furthermore, multiple correlation analysis between GLB depletion and individual CYP activities was performed, demonstrating a significant correlation between GLB depletion and the CYP3A probe activity in 16 individual human liver microsomal preparations, but not between GLB depletion and the CYP2C19, CYP2C8 or CYP2C9 probe activity. By using recombinant supersomes overexpressing individual human CYP isoforms, it was found that GLB could be depleted by all the enzymes tested; however, the intrinsic clearance (Vmax/Km) of CYP3A4 for GLB depletion was 4,17 times greater than that of other CYP isoforms. These results confirm that human CYP3A4 is the major enzyme involved in the in vitro metabolism of GLB. Copyright © 2010 John Wiley & Sons, Ltd. [source] Formation of a defluorinated metabolite of a quinoxaline antiviral drug catalysed by human cytochrome P450 1A2JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 3 2001Peter J. Mutch The in-vitro metabolism of GW420867X ((S)-2-ethyl-7-fluoro-3-oxo-3, 4-dihydro-2H-quinoxaline-1-carboxylic acid isopropyl ester), a quinoxaline drug for the potential treatment of HIV, has been studied with singly expressed human cytochromes P450 (CYP 450). No biotransformation of [14C]GW420867X was evident in the presence of any of the CYP 450 isoforms, with the exception of CYP 450 1A2, where a single metabolite was observed in the HPLC radiochromatograms of enzyme incubations with the test compound. The structure of this metabolite was determined by nuclear magnetic resonance spectroscopy and mass spectrometry, and was shown to correspond to the replacement of the aromatic fluorine of GW420867X with a hydroxyl group. Thus, it appeared that CYP 450 1A2 catalysed the specific defluorination of GW420867X, presumably during formation of an arene oxide intermediate during aromatic hydroxylation. [source] Interaction of dexloxiglumide, a cholecystokinin type-1 receptor antagonist, with human cytochromes P450BIOPHARMACEUTICS AND DRUG DISPOSITION, Issue 4 2004Michael Hall Abstract Dexloxiglumide (DEX) is a cholecystokinin type-1 receptor antagonist under development for the treatment of constipation-predominant irritable bowel syndrome. Studies of the potential interaction of DEX with human cytochromes P450 (CYPs) were conducted in vitro. DEX (300µM), both with and without a 15-min pre-incubation, was incubated with pooled human liver microsomes and substrates selective for each of eight CYPs. This resulted in >30% inhibition of tolbutamide 4-methyl-hydroxylase (CYP2C9/10) and lauric acid 11-hydroxylase (CYP2E1) activities. Mean Ki (SD) for CYP2C9/10 and CYP2E1 were 69.0 (24.3) and 426 (60)µM, respectively. Incubations of [14C]DEX with pooled human liver microsomes produced one major phase I metabolic fraction, with Vmax=131 pmol/min/mg protein and Km=23.7µM. Further incubations with (i) liver microsomes from 16 individual donors (correlation analysis), (ii) SupersomesÔ and (iii) selective chemical inhibitors, implicated CYP3A4/5, CYP2B6 and CYP2C9 in the formation of this component. Thus, DEX interacts with CYP2C9 both as inhibitor (Ki=69.0µM) and as substrate in vitro. However, based on the maximum concentration (27µM) after repeated oral doses of 200mg t.i.d. and the unbound fraction (0.03) of DEX in human plasma, no clinically relevant metabolic interactions with other CYP substrates are predicted. Copyright © 2004 John Wiley & Sons, Ltd. [source] Rapid determination of enzyme activities of recombinant human cytochromes P450, human liver microsomes and hepatocytesBIOPHARMACEUTICS AND DRUG DISPOSITION, Issue 9 2003Anima Ghosal Abstract Cytochrome P450 (CYP) substrates that yield fluorescent metabolites were used for rapid screening of drug metabolism activities of 13 recombinant human cytochromes P450, human liver microsomes and human hepatocytes. Reproducible results were obtained using a fluorescent plate reader (CytoFluor) more expediently than those generated using conventional HPLC methods. Typically, results for 96 samples were obtained with the plate reader in less than 10 min as opposed to 15,35 min/sample required by conventional HPLC. The fluorescent substrates used to measure CYP activities were as follows: 3-cyano-7-ethoxycoumarin (CEC) for CYP1A1, CYP1A2, CYP2C9 and CYP2C19; 7-ethoxyresorufin (7-ER) for CYP1A1, CYP1A2 and CYP1B1; 3-[2-(N,N -diethyl- N -methylammonium)ethyl]-7-methoxy-4-methylcoumarin (AMMC) for CYP2D6; dibenzylfluorescein (DBF) for CYP3A4, CYP3A5 and CYP2C8; 7-methoxy-4-trifluoromethylcoumarin (7-MFC) for CYP2E1, CYP2B6 and CYP2C18; and coumarin for CYP2A6. The chemical inhibition and correlation data indicated that the following substrates can be used as specific functional probes for individual cytochrome P450 present in human liver microsomes: coumarin for CYP2A6 (r=0.82), AMMC for CYP2D6 (r=0.83) and DBF for CYP3A4 (r=0.92). The fluorescent plate reader was found to be useful for the rapid assessment of CYP activities (positive control) in both intact cells and subcellular fractions. Copyright © 2003 John Wiley & Sons, Ltd. [source] |