Home About us Contact | |||
Human Corneal Endothelial Cells (human + corneal_endothelial_cell)
Selected Abstracts3133: Planar patch-clamping in human corneal endothelial cells: a new tool for clinical application?ACTA OPHTHALMOLOGICA, Issue 2010S MERGLER Purpose Identification of apoptotic or damaged human corneal endothelial cells (HCECs) is limited to morphological evaluation such as phase contrast microscopy and vital staining. The molecular mechanisms of corneal endothelial cell loss are not fully understood. Special investigations in cellular signalling and ion channel research are necessary to elucidate the mechanisms of corneal cell loss. In this context, it is known that this cell loss is often caused by apoptosis in oxidative stress. Methods Automated planar patch-clamp has become common in drug development and safety programs because it enables efficient and systematic testing of compounds against ion channels during voltage-clamp. A particularly successful automated approach is based on planar patch-clamp chips and this is the basis for the technology used here. Routine intracellular or extracellular perfusion opens possibilities for studying the regulation and pharmacology of ion channels. Previously, these studies were available only to highly skilled and dedicated experimenters. Results Notable, definite ion channel activities could be demonstrated by conventional as well as by planar patch-clamp in HCECs for the first time. In particular, temperature-sensing transient receptor potential (TRP)-like non-selective cation channel currents as well as capsaicin-sensitive ion channel currents could be detected. The expression of TRPV1-3 ion channels in HCEC could also be confirmed by RT-PCR, Western blot analysis and fluorescence cell imaging. Conclusion The administration of this novel measuring technology opens new perspectives in the investigation of the physiology of HCEC. The findings may have direct clinical implication (eye banking procedures, keratoplasty). [source] Cytotoxicity of ophthalmic solutions with and without preservatives to human corneal endothelial cells, epithelial cells and conjunctival epithelial cellsCLINICAL & EXPERIMENTAL OPHTHALMOLOGY, Issue 6 2008Masahiko Ayaki MD Abstract Purpose:, The cytotoxicity of a range of commercial ophthalmic solutions in the presence and absence of preservatives was assessed in human corneal endothelial cells (HCECs), corneal epithelia and conjunctival epithelia using in vitro techniques. Methods:, Cell survival was measured using the WST-1 assay for endothelial cells and the MTT assay for epithelial cells. Commercially available timolol, carteolol, cromoglicate, diclofenac, bromfenac and hyaluronic acid ophthalmic solutions were assessed for cytotoxicity in the presence and absence of preservatives. The preservatives benzalkonium, chlorobutanol and polysorbate were also tested. The survival of cells exposed to test ophthalmic solutions was expressed as a percentage of cell survival in the control solution (distilled water added to media) after 48 h exposure. Results:, HCEC survival was 20,30% in ophthalmic solutions diluted 10-fold. The survival of HCEC was significantly greater in all solutions in the absence of preservative than in the presence of preservative. The survival of corneal and conjunctival epithelia was consistent with that of HCECs for all test ophthalmic solutions. The preservatives polysorbate and benzalkonium were highly cytotoxic with cell survival decreasing to 20% at the concentration estimated in commercial ophthalmic solutions. By comparison, the survival of cells exposed to chlorobutanol was 80% or greater. Conclusions:, The cytotoxicity of ophthalmic solutions to HCEC, corneal epithelia and conjunctival epithelia decreased in the absence of preservative. [source] |