Human Colon Cancer Cells (human + colon_cancer_cell)

Distribution by Scientific Domains

Terms modified by Human Colon Cancer Cells

  • human colon cancer cell line

  • Selected Abstracts


    Mesalazine downregulates c-Myc in human colon cancer cells.

    ALIMENTARY PHARMACOLOGY & THERAPEUTICS, Issue 12 2007
    A key to its chemopreventive action?
    Summary Background, Dysplasia and malignant transformation of colonocytes in ulcerative colitis are associated with overexpression of c-Myc and genes regulating cell survival. 5-Aminosalicylates such as mesalazine may reduce the development of colorectal cancer in ulcerative colitis, but the mechanisms of its chemopreventive action are not clear. Aims, To examine whether mesalazine affects the expression of c-Myc in human colon cancer cell lines. Methods, Human colon cancer cells were treated with vehicle or mesalazine (4 mm or 40 mm). We examined: (i) mRNA expression by gene array, (ii) protein expression by Western blotting and immunohistochemistry and (iii) apoptosis by Annexin V labelling. Results, Mesalazine significantly reduced expression of c-Myc mRNA and protein. Conclusions, Mesalazine downregulates gene and protein expression of c-Myc. The apoptotic and growth inhibitory effects of mesalazine are dose-dependent. Expression of c-Myc is significantly reduced by mesalazine 40 mm. [source]


    Synthesis and In-Vitro Antitumor Activities of Some Mannich Bases of 9-Alkyl-1,2,3,4-tetrahydrocarbazole-1-ones

    ARCHIV DER PHARMAZIE, Issue 3 2009
    Jing Chen
    Abstract A novel series of 2-substituted aminomethyl-9-alkyl-1,2,3,4-tetrahydrocarbazole-1-ones 5a,q was synthesized via aminomethylation of 9-alkyl-1,2,3,4-tetrahydrocarbazole-1-ones 4a,e with hydrochlorides of the respective amines 6a,m. The structures of these newly synthesized compounds were characterized by 1H-NMR, MS, and elemental analysis. All the compounds were tested for their cytotoxic activity in vitro against four human tumor cell lines including human non-small lung cancer cells (A549), human gastric adenocarcinoma (SGC), human colon cancer cell (HCT116), human myeoloid leukemia cells (K562), and one multi-drug resistant subline (KB-VCR). Most compounds showed moderate to potent cytotoxic activity against the tested cell lines. Preliminary mechanism research indicated that the most promising compound, 2-diethylaminomethyl-9-methyl-1,2,3,4-tetrahydrocarbazole-1-one 5c, exhibited a potential inhibitory effect against microtubule. [source]


    Cover Picture: Electrophoresis 16'2010

    ELECTROPHORESIS, Issue 16 2010
    Article first published online: 19 AUG 2010
    Issue no. 16 is a regular issue with an Emphasis on "Proteins and Proteomics" comprising 20 manuscripts distributed over 4 separate parts. Part I has 7 research articles on various aspects of proteins and proteomics including combinatorial peptide ligand library for accessing low abundance proteins, analysis of membrane proteins, proteomic profiling of human colon cancer cells, quantitative determinations of biomarkers in clinical diagnostics, recombinant factor VIII, analysis of E. coli soluble proteins, and a weakly basic amino-reactive fluorescent label for IEF of proteins and chip electrophoresis. Part II has 2 research articles dealing with the CE analysis of magnetic nanoparticles and a microfluidic magnetic bead impact for cell stimulation. Part III consists of 2 research articles dealing with on-line preconcentration in CE. Instrumentation, devices and various methodologies are described in 9 research articles, which make the content of Part IV. Featured articles include: Combinatorial peptide ligand library plasma treatment: Advantages for accessing low-abundance proteins ((doi: 10.1002/elps.201000188)) Precautions to improve the accuracy of quantitative determinations of biomarkers in clinical diagnostics ((doi: 10.1002/elps.201000243)) Rapid identification of Candida albicans in blood by combined capillary electrophoresis and fluorescence in situ hybridization ((doi: 10.1002/elps.201000138)) [source]


    Upregulation of glycolytic enzymes in proteins secreted from human colon cancer cells with 5-fluorouracil resistance

    ELECTROPHORESIS, Issue 12 2009
    Young-Kyoung Shin
    Abstract 5-Fluorouracil (5-FU) is the most commonly used chemotherapeutic agent for colorectal cancer (CRC). However, resistance to this drug is a major obstacle in CRC chemotherapy. Accurate prediction of response to 5-FU would avoid unnecessary chemotherapy and allow the selection of other effective drugs. To identify a candidate predictor of 5-FU resistance, we isolated secreted proteins that were up- or downregulated in a 5-FU-resistant cancer cell line, compared with the parent cell line (SNU-C4), using a stable isotope-coded labeling protocol. For validating the clinical applicability of this method, levels of the identified proteins were determined in the sera of 46 patients treated with 5-FU. In total, 238 proteins with molecular weights ranging from 50 to 75,kDa were identified. Among these, 45 and 35 secreted proteins were up- and downregulated in the 5-FU-resistant cell line, respectively. We observed significant upregulation of glycolytic enzymes, including glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase M2 (PK-M2), transketolase, and NADP(+)-dependent malic enzyme 1. In particular, the level of PK-M2, a key enzyme in the glycolytic pathway, showed an increasing tendency in both sera and tissues from CRC patients displaying no response to 5-FU-based chemotherapy (progressive and stable disease cases), compared with that in complete or partial responders to 5-FU-based chemotherapy; however, it did not reach the statistical significance. In conclusion, increasing pattern of PK-M2 observed with 5-FU resistance induced in vitro and in sera and tissues from CRC patients displaying poor response to 5-FU-based chemotherapy suggest the relevance of dysregulated glycolysis and 5-FU-resistant CRC. [source]


    NF-,B and apoptosis in colorectal tumourigenesis

    EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 5 2007
    M. M. Aranha
    Abstract Background, Nuclear factor-,B (NF-,B) may play an important role in colorectal tumourigenesis, controlling cell cycle and apoptosis gene expression. In addition, imbalances between cell proliferation and cell death are thought to underlie neoplastic development. The aims of this study were to investigate apoptosis and expression of several apoptosis-related proteins, and to determine correlations with colorectal tumour progression. Materials and methods, Apoptosis was evaluated by the TUNEL assay in 48 patient samples, including adenomas, adenocarcinomas and adjacent normal mucosas. Immunohistochemistry was performed for Bcl-2 and NF-,B. Expression levels of p53, Bax and I,B proteins were determined by immunoblotting. Cultured human colon cancer cells were used to evaluate NF-,B expression and nuclear translocation by immunocytochemistry and immunoblotting. Results, Apoptosis and NF-,B immunoreactivity were significantly higher in tumour tissue compared with normal mucosa (P < 0·01), increasing in association with histological tumour progression (P < 0·01). Bcl-2 was consistently higher in normal mucosa (P < 0·01) and inversely correlated with the percentage of apoptosis (P < 0·01). Phosphorylated p53 and Bax levels were similar in tumour tissue and normal mucosa; however, the NF-,B inhibitor, I,B, tended to decrease in tumours. In vitro, nuclear translocation of NF-,B was greater in proliferative than in resting phases of colon cancer cells. Conclusions, NF-,B expression and apoptosis are increased from adenoma to poorly differentiated adenocarcinoma tissues. Apoptosis is correlated with suppression of Bcl-2 expression, but appears to proceed through a p53- and Bax-independent pathway. Activation of NF-,B may play an important role in colorectal tumour progression. [source]


    COX-2-independent antiproliferative action of acetylsalicylic acid in human colon cancer cells

    EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 11 2002
    M. N. Göke
    No abstract is available for this article. [source]


    Intracellular trafficking and release of intact edible mushroom lectin from HT29 human colon cancer cells

    FEBS JOURNAL, Issue 7 2000
    Lu-Gang Yu
    Our previous studies have shown that the Gal,1,3GalNAc,- (Thomsen,Friedenreich antigen)-binding lectin from the common edible mushroom Agaricus bisporus (ABL) reversibly inhibits cell proliferation, and this effect is a consequence of inhibition of nuclear localization sequence-dependent nuclear protein import after ABL internalization [Yu, L.G., Fernig, D.G., White, M.R.H., Spiller, D.G., Appleton, P., Evans, R.C., Grierson, I., Smith, J.A., Davies, H., Gerasimenko, O.V., Petersen, O.H., Milton, J.D. & Rhodes, J.M. (1999) J. Biol. Chem.274, 4890,4899]. Here, we have investigated further the intracellular trafficking and fate of ABL after internalization in HT29 human colon cancer cells. Internalization of 125I-ABL occurred within 30 min of the lectin being bound to the cell surface. Subcellular fractionation after pulse labelling of the cells with 125I-ABL for 2 h at 4 °C followed by culture of the cells at 37 °C demonstrated a steady increase in radioactivity in a crude nuclear extract. The radioactivity in this extract reached a maximum after 10 h and declined after 20 h. Release of ABL from the cell, after pulse labelling, was assessed using both fluorescein isothiocyanate-labelled ABL and 125I-ABL and was slow, with a t1/2 of 48 h. Most of the 125I-ABL both inside cells and in the medium remained intact, as determined by trichloroacetic acid precipitation and SDS/PAGE, and after 48 h only 22 ± 2% of ABL in the medium and 14 ± 2% inside the cells was degraded. This study suggests that the reversibility of the antiproliferative effect of ABL is associated with its release from cells after internalization. The internalization and subsequent slow release, with little degradation of ABL, reflects the tendency of lectins to resist biodegradation and implies that other endogenous or exogenous lectins may be processed in this way by intestinal epithelial cells. [source]


    Ascochlorin activates p53 in a manner distinct from DNA damaging agents

    INTERNATIONAL JOURNAL OF CANCER, Issue 12 2009
    Ji-Hak Jeong
    Abstract Ascochlorin, a prenylphenol antitumor antibiotic, profoundly increases the expression of endogenous p53 by increasing protein stability in the human osteosarcoma cells and human colon cancer cells. Ascochlorin also increases DNA binding activity to the p53 consensus sequence in nuclear extract and enhances transcription of p53 downstream targets. Ascochlorin specifically induces p53 phosphorylation at ser 392 without affecting ser 15 or 20, whereas DNA damaging agents typically phosphorylate these serines. Moreover, ascochlorin does not induce phosphorylation of ATM and CHK1, an established substrate of ATR that is activated by genotoxins, nor does it increase DNA strand break, as confirmed by comet assay. The structure-activity relationship suggests that p53 activation by ascochlorin is related to inhibition of mitochondrial respiration, which is further supported by the observation that respiratory inhibitors activate p53 in a manner similar to ascochlorin. These results suggest that ascochlorin, through the inhibition of mitochondrial respiration, activates p53 through a mechanism distinct from genotoxins. © 2009 UICC [source]


    Conjugated linoleic acid inhibits peritoneal metastasis in human gastrointestinal cancer cells

    INTERNATIONAL JOURNAL OF CANCER, Issue 3 2006
    Hiroki Kuniyasu
    Abstract The effect of conjugated linoleic acid (CLA) on peritoneal metastasis was examined by in vitro treatment of cancer cells and mouse peritoneal metastasis models. First, cell growth of MKN28 human gastric cancer cells and Colo320 human colon cancer cells was suppressed by CLA in a dose-dependent manner with an increment in apoptosis. CLA significantly inhibited invasion into type IV collagen-coated membrane of MKN28 and Colo320 cells (p < 0.05). CLA-induced growth inhibition was recovered by the exposure to antisense S-oligodeoxynucleotide for peroxisome proliferator-activated receptor (PPAR)-, in both cell lines. BALB/c nu-nu mice were inoculated with MKN28 and Colo320 cells into their peritoneal cavity, and administrated with CLA intraperitoneally (weekly, 4 times). CLA treatment did not affect food intake or weight gain of mice. CLA treatment significantly decreased metastatic foci of both cells in the peritoneal cavity (p < 0.005). Survival rate in mice inoculated with MKN28 or Colo320 cells was significantly recovered by CLA treatment (p = 0.0025 and 0.0052, respectively). Protein production in MKN28 and Colo320 cells treated with CLA showed a decrease in epidermal growth factor receptor and transforming growth factor-, and an increase in Bax. These findings suggest that CLA inhibits metastasis of human gastric and colon cancer cells. © 2005 Wiley-Liss, Inc. [source]


    Vitamin D Receptor: Key Roles in Bone Mineral Pathophysiology, Molecular Mechanism of Action, and Novel Nutritional Ligands,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue S2 2007
    Peter W Jurutka
    Abstract The vitamin D hormone, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], binds with high affinity to the nuclear vitamin D receptor (VDR), which recruits its retinoid X receptor (RXR) heterodimeric partner to recognize vitamin D responsive elements (VDREs) in target genes. 1,25(OH)2D3 is known primarily as a regulator of calcium, but it also controls phosphate (re)absorption at the intestine and kidney. Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone produced in osteoblasts that, like PTH, lowers serum phosphate by inhibiting renal reabsorption through Npt2a/Npt2c. Real-time PCR and reporter gene transfection assays were used to probe VDR-mediated transcriptional control by 1,25(OH)2D3. Reporter gene and mammalian two-hybrid transfections, plus competitive receptor binding assays, were used to discover novel VDR ligands. 1,25(OH)2D3 induces FGF23 78-fold in osteoblasts, and because FGF23 in turn represses 1,25(OH)2D3 synthesis, a reciprocal relationship is established, with FGF23 indirectly curtailing 1,25(OH)2D3 -mediated intestinal absorption and counterbalancing renal reabsorption of phosphate, thereby reversing hyperphosphatemia and preventing ectopic calcification. Therefore, a 1,25(OH)2D3,FGF23 axis regulating phosphate is comparable in importance to the 1,25(OH)2D3,PTH axis that regulates calcium. 1,25(OH)2D3 also elicits regulation of LRP5, Runx2, PHEX, TRPV6, and Npt2c, all anabolic toward bone, and RANKL, which is catabolic. Regulation of mouse RANKL by 1,25(OH)2D3 supports a cloverleaf model, whereby VDR-RXR heterodimers bound to multiple VDREs are juxtapositioned through chromatin looping to form a supercomplex, potentially allowing simultaneous interactions with multiple co-modulators and chromatin remodeling enzymes. VDR also selectively binds certain ,3/,6 polyunsaturated fatty acids (PUFAs) with low affinity, leading to transcriptionally active VDR-RXR complexes. Moreover, the turmeric-derived polyphenol, curcumin, activates transcription of a VDRE reporter construct in human colon cancer cells. Activation of VDR by PUFAs and curcumin may elicit unique, 1,25(OH)2D3 -independent signaling pathways to orchestrate the bioeffects of these lipids in intestine, bone, skin/hair follicle, and other VDR-containing tissues. [source]


    HSP70 interacts with TRAF2 and differentially regulates TNF, signalling in human colon cancer cells

    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 3 2010
    Shengming Dai
    Abstract Members of tumour necrosis factor (TNF) family usually trigger both survival and apoptotic signals in various cell types. Heat shock proteins (HSPs) are conserved proteins implicated in protection of cells from stress stimuli. However, the mechanisms of HSPs in TNF,-induced signalling pathway have not been fully elucidated. We report here that HSP70 over-expression in human colon cancer cells can inhibit TNF,-induced NF,B activation but promote TNF,-induced activation of c-Jun N-terminal kinase (JNK) through interaction with TNF receptor (TNFR)-associated factor 2 (TRAF2). We provide evidence that HSP70 over-expression can sequester TRAF2 in detergent-soluble fractions possibly through interacting with TRAF2, leading to reduced recruitment of receptor-interacting protein (RIP1) and I,B, kinase (IKK) signalosome to the TNFR1,TRADD complex and inhibited NF,B activation after TNF, stimuli. In addition, we found that HSP70,TRAF2 interaction can promote TNF,-induced JNK activation. Therefore, our study suggests that HSP70 may differentially regulate TNF,-induced activation of NF,B and JNK through interaction with TRAF2, contributing to the pro-apoptotic roles of HSP70 in TNF,-induced apoptosis of human colon cancer cells. [source]


    Reduction of intracellular pH inhibits constitutive expression of Cyclooxygenase-2 in human colon cancer cells

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2004
    Daniela Pirkebner
    Cyclooxygenase-2 (COX-2) over-expression is critically involved in tumor formation. Intracellular pH (pHi) has been shown to be alkaline in cancer cells, and to be an important trigger for cell proliferation. This study therefore analyzed the relationship between pHi and COX-2 expression. HRT-18 and Caco-2 cells cultured in medium with bicarbonate maintained a pHi of ,7.6, which is higher than that of non-neoplastic cells. Cells grown in bicarbonate-free medium with a pH at 6.8 showed a reduction in pHi to approximately 7.0. Importantly, reduction of pHi resulted in a complete inhibition of COX-2 mRNA and protein expression. When cells were grown in bicarbonate-supplemented medium at pH 6.8, pHi maintained at ,7.6 and COX-2 expression was not inhibited. Additionally, analysis utilizing protein synthesis inhibitor cycloheximide demonstrated that pHi mediated inhibition of COX-2 mRNA expression requires de novo protein synthesis of regulatory protein(s). These data strongly suggest that an alkaline pHi is an important trigger for constitutive COX-2 expression. Defining pHi -mediated mechanisms that govern the constitutive COX-2 expression may help in developing new strategies to block COX-2 over-expression in cancer cells. J. Cell. Physiol. 198: 295,301, 2004© 2003 Wiley-Liss, Inc. [source]


    Epigenetics are involved in the regulation of the cell cycle and expression of tumor suppressor genes in human colon cancer cells

    JOURNAL OF DIGESTIVE DISEASES, Issue 3 2003
    Ying Xuan CHEN
    OBJECTIVE: To investigate the effects of DNA methylation and histone acetylation on the cell cycle progression and expression of tumor suppressor genes in human colon cancer (HCC) cell lines. METHODS: Three HCC cell lines (HT-29, SW1116 and Colo-320) were treated with the DNA methyl­ation inhibitor, 5-aza-2'-deoxycytidine (5-aza-dC) or/and histone deacetylase (HDAC) inhibitors, tricho­statin A (TSA) or sodium butyrate. The methylation status of the promoter of the p16INK4A gene was assayed by methylation-specific PCR (MSP). The expression of p16INK4A and p21WAF1 was analyzed by RT-PCR. The cell cycle distribution was determined by flow cytometry. RESULTS: Before treatment, p16INK4A expression was slightly detected in the three cell lines (HT-29, SW1116 and Colo-320) and p21WAF1 expression was not detected in SW1116 and Colo-320 cells. The methylation level of the p16INK4A gene promoter significantly decreased and mRNA expression markedly increased in HT-29 cells after treatment with 1 µmol/L, but not 10 µmol/L, of 5-aza-dC for 24 h. In the SW1116 and Colo-320 cells, the expression of p16INK4A was markedly enhanced at 10 µmol/L or 5 µmol/L of 5-aza-dC for 24 h. However, p21WAF1 gene expression was not detected. Interestingly, after treatment with TSA or sodium butyrate, the transcription of p21WAF1 was significantly upregulated in these two cell lines. Furthermore, 5-aza-dC did not affect cell cycle distribution, but TSA or sodium butyrate blocked the cell cycle, mainly in the G1 phase. CONCLUSIONS: The expression of the p16INK4A gene is regulated by DNA methylation in three HCC cell lines. The expression of p21WAF1 gene is regulated by histone acetylation in SW1116 and Colo-320. In these two cell lines, histone hyperacetylation causes a G1 cell cycle arrest. [source]


    Mesalazine downregulates c-Myc in human colon cancer cells.

    ALIMENTARY PHARMACOLOGY & THERAPEUTICS, Issue 12 2007
    A key to its chemopreventive action?
    Summary Background, Dysplasia and malignant transformation of colonocytes in ulcerative colitis are associated with overexpression of c-Myc and genes regulating cell survival. 5-Aminosalicylates such as mesalazine may reduce the development of colorectal cancer in ulcerative colitis, but the mechanisms of its chemopreventive action are not clear. Aims, To examine whether mesalazine affects the expression of c-Myc in human colon cancer cell lines. Methods, Human colon cancer cells were treated with vehicle or mesalazine (4 mm or 40 mm). We examined: (i) mRNA expression by gene array, (ii) protein expression by Western blotting and immunohistochemistry and (iii) apoptosis by Annexin V labelling. Results, Mesalazine significantly reduced expression of c-Myc mRNA and protein. Conclusions, Mesalazine downregulates gene and protein expression of c-Myc. The apoptotic and growth inhibitory effects of mesalazine are dose-dependent. Expression of c-Myc is significantly reduced by mesalazine 40 mm. [source]


    Differential apoptosis by gallotannin in human colon cancer cells with distinct p53 status

    MOLECULAR CARCINOGENESIS, Issue 3 2007
    Sahar Al-Ayyoubi
    Abstract Gallotannin (GT), a plant polyphenol, has shown anticarcinogenic activities in several animal models including colon cancer. In our previous study, we showed that GT inhibits 1,2-dimethylhydrazine-induced colonic aberrant crypt foci and tumors in Balb/c mice, thus supporting a role for GT as a chemopreventive agent in colon cancer. However, at the molecular level, GT's mechanism of chemoprevention is still unclear. In this study, we aim at identifying GT's potential molecular mechanisms of action in in vitro studies. We show that GT differentially inhibits the growth of two isogenic HCT-116 (p53+/+, p53,/,) human colon cancer cells versus normal human intestinal epithelial cells (FHs 74Int). DNA flow cytometric analysis showed that GT induced S-phase arrest in both HCT-116 cell lines. Cell-cycle arrest in p53 (+/+) cells was associated with an increase in p53 protein levels and p21 transcript and protein levels. The inhibition of cell-cycle progression of HCT-116 p53 (+/+) cells by GT correlated with a reduction in the protein levels of cyclin D1, pRb, and the Bax/Bcl-2 ratio. Although GT did not induce apoptosis in p53 (+/+) cells, a significant induction of apoptosis was observed in p53 (,/,) cells as shown by TUNEL staining and flow cytometry analysis. Apoptosis induction in p53 (,/,) cells was associated with a significant increase in Bax/Bcl-2 protein levels. Our results demonstrate that GT inhibits the growth of HCT-116 colon cancer cells in a p53-independent manner but exhibits differential sensitivity to apoptosis induction in HCT-116 cells with distinct p53 status. © 2006 Wiley-Liss, Inc. [source]


    Cover Picture , Mol.

    MOLECULAR NUTRITION & FOOD RESEARCH (FORMERLY NAHRUNG/FOOD), Issue 6 2008
    Nutr.
    Regular issues provide a wide range of research and review articles covering all aspects of Molecular Nutrition & Food Research. Selected topics of issue 6 are: Anti-obesity effects of conjugated linoleic acid, docosahexaenoic acid, and eicosapentaenoic acid. Lycopene inhibits growth of human colon cancer cells Resveratrol inhibits migration and invasion of human breast-cancer cells Quantification of the thaumatin-like kiwi allergen by a monoclonal antibody-based ELISA Short-term effects of a low glycemic load diet on hormonal markers of acne [source]


    Antioxidant and antigenotoxic activities of Angelica keiskei, Oenanthe javanica and Brassica oleracea in the Salmonella mutagenicity assay and in HCT116 human colon cancer cells

    BIOFACTORS, Issue 4 2006
    Daejoong Kwon
    Abstract Epidemiological studies indicate that consumption of green-yellow vegetables rich in chlorophyll, vitamin C, vitamin E, and carotenoids reduce the risk of cancer. We sought to examine the antigenotoxic and antioxidant properties of chlorophyll-rich methanol extracts of Angelica keiskei, Oenanthe javanica, and Brassica oleracea (kale). In the Salmonella mutagenicity assay, A. keiskei caused dose-dependent inhibition against three heterocyclic amine mutagens in the presence of S9, O. javanica was antimutagenic only at the highest concentration in the assay (2 mg/plate), and B. oleracea showed no consistent inhibitory activity at non-toxic levels. None of the extracts were effective against three direct-acting mutagens in the absence of S9. Extracts of A. keiskei and, to a lesser extent O. javanica, inhibited two of the major enzymes that play a role in the metabolic activation of heterocyclic amines, based on ethoxyresorufin-O-deethylase and methoxyresorufin-O-demethylase assays in vitro. All three plant extracts were highly effective in assays which measured ferric reducing/antioxidant power, oxygen radical absorbance capacity, and Fe2+/H2O2 -mediated DNA nicking. Finally, using the ,comet' assay, all three plant extracts protected against H2O2 -induced genotoxic damage in human HCT116 colon cancer cells. These findings provide support for the antigenotoxic and antioxidant properties of chlorophyll-rich extracts of A. keiskei, O. javanica, and B. oleracea, through mechanisms that include inhibition of carcinogen activation and scavenging of reactive oxygen species. [source]


    Mechanism of antitumor effect of a novel bFGF binding peptide on human colon cancer cells

    CANCER SCIENCE, Issue 5 2010
    Cong Wang
    Colon cancer is a leading cause of morbidity and mortality in Western countries. Basic fibroblast growth factor (bFGF) was up-regulated in patients with colon cancer and was considered as a potential therapeutic target. In this study, we first demonstrated that a novel bFGF-binding peptide (named P7) inhibited proliferation of several colon cancer cell lines including HT-29, LoVo, and Caco2 cells stimulated by bFGF. Further investigations with HT-29 cells indicated that P7 arrested the cell cycle at the G0/G1 phase of bFGF-stimulated cells, reduced the levels of phospho-Erk1/Erk2 induced by bFGF, and caused significant changes in the expression of proteins related to proliferation, cell cycle, and cancer. Our results suggested that the bFGF-binding peptide has a potential antitumor effect on colon cancer. (Cancer Sci 2010; 101: 1212,1218) [source]


    Wnt signaling stabilizes the DIXDC1 protein through decreased ubiquitin-dependent degradation

    CANCER SCIENCE, Issue 3 2010
    Lei Wang
    (Cancer Sci 2010; 101: 700,706) Wnt signaling plays key roles in development, cell growth, differentiation, polarity formation, neural development, and carcinogenesis. DIX Domain Containing 1 (DIXDC1), a novel component of the Wnt pathway, was recently cloned. DIXDC1 is the human homolog of Ccd1, a positive regulator of the Wnt signaling pathway during zebrafish neural patterning. Little has been known about DIXDC1 gene expression regulation. In the present study, we showed that the DIXDC1 protein was induced upon Wnt-3a stimulation, whereas the DIXDC1 mRNA level was not significantly increased after Wnt-3a treatment. Positive DIXDC1 staining was detected in colon cancer cells and was colocalized with ,-catenin staining. However, the DIXDC1 mRNA expression decreased in human colon cancer cells compared to the matched normal colon epithelial cells. Our further investigation showed that the DIXDC1 protein was degraded through the proteasome pathway, and the activation of canonical Wnt signaling decreased the ubiquitin-dependent degradation of both the ectopic and endogenous DIXDC1 protein. In order to explore the possible mechanism of the ubiquitination of DIXDC1, we found that the phosphorylation of DIXDC1 was inhibited by Wnt-3a. Collectively, these results indicate that canonical Wnt/,-catenin pathway activation might upregulate DIXDC1 through a post-translational mechanism by inhibiting the ubiquitin-mediated degradation of the DIXDC1 protein. [source]