Home About us Contact | |||
Human Cardiac Fibroblasts (human + cardiac_fibroblast)
Selected AbstractsDevelopment of Live Cell Chips to Monitor Cell Differentiation ProcessesENGINEERING IN LIFE SCIENCES (ELECTRONIC), Issue 1 2008C. Maercker Abstract A big demand exists for high-throughput functional in vitro assays which can measure cellular phenotypes by molecular methods and therefore improve the resources of primary cells for cell therapy, tissue engineering and high-content screenings in drug development. This approach focuses on cellular adhesion which is an important differentiation process during homing of stem cells. Moreover, it is a promising method especially for adherent cells which are not accessible by classical cell sorting methods. The chip design includes a housing with electrodes to measure electric field densities and impedance, respectively. Moreover, specific coatings of the wells permit a perfect growth of the selected cell types. In parallel, protein biomarkers can be followed by light microscopy. So far, experiments have been started to discriminate between different cell densities and cell types. In addition, after stimulating human cardiac fibroblasts and human umbilical vein endothelial cells, concentrations of proteins involved in adhesion had been increased, and proteins were translocated within the cells. In ongoing experiments, different human cell lines and fibroblastoid mesenchymal stem cells isolated from fat tissue, umbilical cord, or bone marrow are tested in the chip. To optimize the adhesion conditions, the surfaces within the vials of the chip were specifically activated. Microscopy was adjusted to be able to measure cellular morphology in parallel. This concept allows to identify the behavior of mesenchymal stem cells, which cannot be described so far by standard biomarkers. In addition, simulation of the homing process of the cells within its stem cell niche in an in vitro assay is a promising setup for large-scale gain-of-function or loss-of-function screenings in functional genomics as well as for generating precursor cells relevant for the therapy of various diseases. [source] B-type natriuretic peptide and extracellular matrix protein interactions in human cardiac fibroblastsJOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2010Brenda K. Huntley Cardiac fibroblasts (CFs) regulate myocardial remodeling by proliferating, differentiating, and secreting extracellular matrix (ECM) proteins. B-type natriuretic peptide (BNP) is anti-fibrotic, inhibits collagen production, augments matrix metalloproteinases, and suppresses CF proliferation. Recently, we demonstrated that the ECM protein fibronectin (FN) augmented production of BNP's second messenger, 3,, 5, cyclic guanosine monophosphate (cGMP) in CFs, supporting crosstalk between FN, BNP, and its receptor, natriuretic peptide receptor A (NPR-A). Here, we address the specificity of FN to augment cGMP generation by investigating other matrix proteins, including collagen IV which contains RGD motifs and collagen I and poly- L -lysine, which have no RGD domain. Collagen IV showed increased cGMP generation to BNP similar to FN. Collagen I and poly- L -lysine had no effect. As FN also interacts with integrins, we then examined the effect of integrin receptor antibody blockade on BNP-mediated cGMP production. On FN plates, antibodies blocking RGD-binding domains of several integrin subtypes had little effect, while a non-RGD domain interfering integrin ,v,3 antibody augmented cGMP production. Further, on uncoated plates, integrin ,v,3 blockade continued to potentiate the BNP/cGMP response. These studies suggest that both RGD containing ECM proteins and integrins may interact with BNP/NPR-A to modulate cGMP generation. J. Cell. Physiol. 225: 251,255, 2010. © 2010 Wiley-Liss, Inc. [source] BNP-induced activation of cGMP in human cardiac fibroblasts: Interactions with fibronectin and natriuretic peptide receptorsJOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2006Brenda K. Huntley Cardiac remodeling involves the accumulation of extracellular matrix (ECM) proteins including fibronectin (FN). FN contains RGD motifs that bind integrins at DDX sequences allowing signaling from the ECM to the nucleus. We noted that the natriuretic peptide receptor A (NPR-A) sequence contains both RGD and DDX sequences. The goal of the current investigation was to determine potential interactions between FN and NPR-A on BNP induction of cGMP in cultured human cardiac fibroblasts (CFs). Further, we sought to determine whether a Mayo designed NPR-A specific RGD peptide could modify this interaction. Here we reconfirm the presence of all three natriuretic peptide receptors (NPR) in CFs. CFs plated on FN demonstrated a pronounced increase in cGMP production to BNP compared to non-coated plates. This production was also enhanced by the NPR-A specific RGD peptide, which further augmented FN associated cGMP production. Addition of HS-142-1, a NPR-A/B antagonist, abrogated the responses of BNP to both FN and the NPR-A specific RGD peptide. Finally, we defined a possible role for the NPR-C through non-cGMP mechanisms in mediating the anti-proliferative actions of BNP in CFs where the NPR-C antagonist cANF 4-28 but not HS-142-1 blocked BNP-mediated inhibition of proliferation of CFs. We conclude that NPR-A interacts with components of the ECM such as FN to enhance BNP activation of cGMP and that a small NPR-A specific RGD peptide augments this action of BNP with possible therapeutic implications. Lastly, the NPR-C may also have a role in mediating anti-proliferative actions of BNP in CFs. J. Cell. Physiol. 209: 943,949, 2006. © 2006 Wiley-Liss, Inc. [source] |