Home About us Contact | |||
Human Brain Microvascular Endothelial Cells (human + brain_microvascular_endothelial_cell)
Selected AbstractsGlioma cells under hypoxic conditions block the brain microvascular endothelial cell death induced by serum starvationJOURNAL OF NEUROCHEMISTRY, Issue 1 2005Yoshifumi Ueda Abstract Angiogenesis is one of essential components for the growth of neoplasms, including malignant gliomas. However, tumor vascularization is often poorly organized and marginally functional due to tumor strucutural abnormalities, inducing regional or temporal hypoxic conditions and nutritional shortages in tumor tissues. We investigated how during angiogenesis migrating endothelial cells survive in these hypoxic and reduced nutritional conditions. Human brain microvascular endothelial cells (HBMECs) underwent apoptosis and necrosis after serum withdrawal. This endothelial cell death was blocked by recombinant VEGF protein or the culture medium of U251 glioma cells exposed to hypoxia (H-CM). Hypoxic treatment increased vascular endothelial growth factor (VEGF) and tumor necrosis factor alpha (TNF-,) expression in U251 glioma cells. H-CM activated nuclear factor-,B (NF,B) protein and increased the gene expression of antiapoptotic factors including Bcl-2, Bcl-XL, survivin and X-chromosome-linked inhibitor of apoptosis protein (XIAP) in endothelial cells. The survival activity of H-CM for endothelial cells was abolished by two kinds of VEGF inhibitors {Cyclopeptidic VEGF inhibitor and a VEGF receptor tyrosine kinase inhibitor (4-[(4,-chloro-2,-fluoro) phenylamino]-6, 7-dimethoxyquinazoline)} or NF,B inhibitors (ALLN and BAY 11,7082). These VEGF inhibitors did not block the activation of NF,B induced by H-CM in endothelial cells. On the contrary, TNF-, antagonist WP9QY enhanced the survival activity of H-CM for endothelial cells and blocked NF,B activation induced by H-CM under serum-starved conditions. Taken together, our data suggest that both the secretion of VEGF from glioma cells and activation of NF,B in endothelial cells induced by TNF-, are necessary for endothelial cell survival as they increase the expression of antiapoptotic genes in endothelial cells under conditions of serum starvation. These pathways may be one of the mechanisms by which angiogenesis is maintained in glioma tissues. [source] Nitric Oxide-Induced Changes in Endothelial Expression of Phosphodiesterases 2, 3, and 5HEADACHE, Issue 3 2010Christoph J. Schankin MD (Headache 2010;50:431-441) Objective., To investigate nitric oxide (NO)-mediated changes in expression of cyclic nucleotide degrading phosphodiesterases 2A (PDE2A), PDE3B, and PDE5A in human endothelial cells. Background., Nitric oxide induces production of cyclic guanosine monophosphate (cGMP), which along with cyclic adenosine monophosphate (cAMP) is degraded by PDEs. NO donors and selective inhibitors of PDE3 and PDE5 induce migraine-like headache and play a role in endothelial dysfunction during stroke. The current study investigates possible NO modulation of cGMP-related PDEs relevant to headache induction in a cell line containing such PDEs. Methods., Real time polymerase chain reaction and Western blots were used to show expression of PDE2A, PDE3B, and PDE5A in a stable cell line of human brain microvascular endothelial cells. Effects of NO on PDE expression were analyzed at specific time intervals after continued DETA NONOate administration. Results., This study shows the expression of PDE2A, PDE3B, and PDE5A mRNA and PDE3B and PDE5A protein in human cerebral endothelial cells. Long-term DETA NONOate administration induced an immediate mRNA up-regulation of PDE5A (1.9-fold, 0.5 hour), an early peak of PDE2A (1.4-fold, 1 and 2 hours) and later up-regulation of both PDE3B (1.6-fold, 4 hours) and PDE2A (1.7-fold, 8 hours and 1.2-fold after 24 hours). Such changes were, however, not translated into significant changes in protein expression indicating few, if any, functional effects. Conclusions., Long-term NO stimulation modulated PDE3 and PDE5 mRNA expression in endothelial cells. However, PDE3 and PDE5 protein levels were unaffected by NO. The presence of PDE3 or PDE5 in endothelial cells indicates that selective inhibitors may have functional effects in such cells. A complex interaction of cGMP and cAMP in response to NO administration may take place if the mRNA translates into active protein. Whether or not this plays a role in the headache mechanisms remains to be investigated. [source] Invasion of Cryptococcus neoformans into human brain microvascular endothelial cells requires protein kinase C-, activationCELLULAR MICROBIOLOGY, Issue 9 2008Ambrose Jong Summary Pathogenic fungus Cryptococcus neoformans has a predilection for the central nervous system causing devastating meningoencephalitis. Traversal of C. neoformans across the blood,brain barrier (BBB) is a crucial step in the pathogenesis of C. neoformans. Our previous studies have shown that the CPS1 gene is required for C. neoformans adherence to the surface protein CD44 of human brain microvascular endothelial cells (HBMEC), which constitute the BBB. In this report, we demonstrated that C. neoformans invasion of HBMEC was blocked in the presence of G109203X, a protein kinase C (PKC) inhibitor, and by overexpression of a dominant-negative form of PKC, in HBMEC. During C. neoformans infection, phosphorylation of PKC, was induced and the PKC enzymatic activity was detected in the HBMEC membrane fraction. Our results suggested that the PKC, isoform might play a crucial role during C. neoformans invasion. Immunofluorescence microscopic images showed that induced phospho-PKC, colocalized with ,-actin on the membrane of HBMEC. In addition, cytochalasin D (an F-filament-disrupting agent) inhibited fungus invasion into HBMEC in a dose-dependent manner. Furthermore, blockage of PKC, function attenuated actin filament activity during C. neoformans invasion. These results suggest a significant role of PKC, and downstream actin filament activity during the fungal invasion into HBMEC. [source] |