Human Astrocytes (human + astrocyte)

Distribution by Scientific Domains


Selected Abstracts


Identification of soluble CD14 as an endogenous agonist for Toll-like receptor 2 on human astrocytes by genome-scale functional screening of glial cell derived proteins

GLIA, Issue 5 2007
Malika Bsibsi
Abstract Human astrocytes express a limited repertoire of Toll-like receptor (TLR) family members including TLR1-4, which are expressed on the cell surface. Also, TLR3 but not TLR4 activation on astrocytes induces expression of several factors involved in neuroprotection and down-regulation of inflammation rather than in the onset of traditional pro-inflammatory reactions. The notion that astrocyte TLR may thus play a role not only in host defense but also in tissue repair responses prompted us to examine the possibility that endogenous TLR agonists could be expressed in the human central nervous system to regulate the apparently dual astrocyte functions during trauma or inflammation. As a potential source of endogenous agonists, a cDNA library derived from several human brain tumor cell lines was used. Gene pools of this library were transfected into COS-7 cells and the expression products were screened for their ability to induce TLR activation in human primary astrocytes. The screening resulted in the identification of soluble CD14. By using a panel of TLR-transfected HEK293 cells, we found that signaling by soluble CD14 was TLR2 dependent. Moreover, the CD14-triggered TLR2-mediated response in astrocytes lead to the production of CXCL8, IL-6, and IL12p40, whereas typical TLR-induced pro-inflammatory cytokines, like TNF-, and IL-1,, were not produced at detectable levels. In conclusion, our data indicate that apart from its well-known ability to act as a co-receptor for TLR-dependent signaling by peptidoglycans or LPS, soluble CD14 can also act as a direct agonist for TLR2. © 2007 Wiley-Liss, Inc. [source]


Differential erbB signaling in astrocytes from the cerebral cortex and the hypothalamus of the human brain

GLIA, Issue 4 2009
Ariane Sharif
Abstract Studies in rodents have shown that astroglial erbB tyrosine kinase receptors are key regulatory elements in neuron,glia communication. Although both astrocytes and deregulation of erbB functions have been implicated in the pathogenesis of many common human brain disorders, erbB signaling in native human brain astrocytes has never been explored. Taking advantage of our ability to perform primary cultures from the cortex and the hypothalamus of human fetuses, we conducted a thorough analysis of erbB signaling in human astrocytes. We showed that human cortical astrocytes express erbB1, erbB2, and erbB3, whereas human hypothalamic astrocytes express erbB1, erbB2, and erbB4 receptors. Ligand-dependent activation of different erbB receptor heterodimeric complexes in these two populations of astrocytes translated into different morphological and proliferative responses. Although morphological plasticity was more pronounced in hypothalamic astrocytes than in cortical astrocytes, the former showed a lower mitogenic potential. Decreasing erbB4 expression via siRNA-mediated gene knockdown revealed that erbB4 constitutively restrains basal proliferative activity in hypothalamic astrocytes. We further show that treatment of human astrocytes with a protein kinase C activator results in rapid tyrosine phosphorylation of erbB receptors that involves cleavage of endogenous membrane bound erbB ligands by metalloproteinases. Together, these results indicate that erbB signaling in primary human brain astrocytes is functional, region-specific, and can be activated in a paracrine and/or autocrine manner. In addition, by revealing that some aspects of astroglial erbB signaling are different between human and rodents, our results provide a molecular framework to explore the potential involvement of astroglial erbB signaling deregulation in human brain disorders. © 2008 Wiley-Liss, Inc. [source]


Identification of soluble CD14 as an endogenous agonist for Toll-like receptor 2 on human astrocytes by genome-scale functional screening of glial cell derived proteins

GLIA, Issue 5 2007
Malika Bsibsi
Abstract Human astrocytes express a limited repertoire of Toll-like receptor (TLR) family members including TLR1-4, which are expressed on the cell surface. Also, TLR3 but not TLR4 activation on astrocytes induces expression of several factors involved in neuroprotection and down-regulation of inflammation rather than in the onset of traditional pro-inflammatory reactions. The notion that astrocyte TLR may thus play a role not only in host defense but also in tissue repair responses prompted us to examine the possibility that endogenous TLR agonists could be expressed in the human central nervous system to regulate the apparently dual astrocyte functions during trauma or inflammation. As a potential source of endogenous agonists, a cDNA library derived from several human brain tumor cell lines was used. Gene pools of this library were transfected into COS-7 cells and the expression products were screened for their ability to induce TLR activation in human primary astrocytes. The screening resulted in the identification of soluble CD14. By using a panel of TLR-transfected HEK293 cells, we found that signaling by soluble CD14 was TLR2 dependent. Moreover, the CD14-triggered TLR2-mediated response in astrocytes lead to the production of CXCL8, IL-6, and IL12p40, whereas typical TLR-induced pro-inflammatory cytokines, like TNF-, and IL-1,, were not produced at detectable levels. In conclusion, our data indicate that apart from its well-known ability to act as a co-receptor for TLR-dependent signaling by peptidoglycans or LPS, soluble CD14 can also act as a direct agonist for TLR2. © 2007 Wiley-Liss, Inc. [source]


Neuropathologic and neuroinflammatory activities of HIV-1-infected human astrocytes in murine brain

GLIA, Issue 2 2006
Huanyu Dou
Abstract The balance between astrocyte and microglia neuroprotection and neurotoxicity defines the tempo of neuronal dysfunction during HIV-1-associated dementia (HAD). Astrocytes maintain brain homeostasis and respond actively to brain damage by providing functional and nutritive neuronal support. In HAD, low-level, continuous infection of astrocytes occurs, but the functional consequences of thisinfection are poorly understood. To this end, human fetal astrocytes (HFA) and monocyte-derived macrophages (MDM) were infected with HIV-1DJV and HIV-1NL4-3 (neurotropic and lymphotropic strains respectively) and a pseudotyped Vesicular Stomatitis Virus (VSV/HIV-1NL4-3) prior to intracranial injection into the basal ganglia of severe combined immunodeficient mice. Neuropathological and immunohistochemical comparisons for inflammatory and neurotoxic activities were performed amongst the infected cell types at 7 or 14 days. HIV-1-infected MDM induced significant increases in Mac-1, glial fibrillary acidic protein, ionized calcium-binding adapter molecule 1, and proinflammatory cytokine RNA and/or protein expression when compared with HSV/HIV-1- and HIV-1-infected HFA and sham-operated mice. Levels of neuron-specific nuclear protein, microtubule-associated protein 2, and neurofilament antigens were reduced significantly in the brain regions injected with human MDM infected with HIV-1DJV or VSV/HIV-1. We conclude that HIV-1 infection of astrocytes leads to limited neurodegeneration, underscoring the early and active role of macrophage-driven neurotoxicity in disease. © 2006 Wiley-Liss, Inc. [source]


Isolated human astrocytes are not susceptible to infection by M- and T-tropic HIV-1 strains despite functional expression of the chemokine receptors CCR5 and CXCR4 ,

GLIA, Issue 3 2001
Agnès Boutet
Abstract Within the brain, HIV-1 targets the microglia and astrocytes. Previous studies have reported that viral entry into astrocytes is independent of CD4, in contrast to microglia. We aimed to determine whether chemokine receptors play a role in mediating CD4-independent HIV-1 entry into astrocytes. We found that embryonic astrocytes and microglial cells express CCR5, CCR3, and CXCR4 transcripts. Intracellular calcium levels in astrocytes were found to increase following application of RANTES, MIP-1, (CCR5-agonist), SDF-1, (CXCR4-agonist), but not eotaxin (CCR3-agonist). In microglial cells, eotaxin was also able to modulate internal calcium homeostasis. CD4 was not present at the cell surface of purified astrocytes but CD4 mRNA could be detected by RT-PCR. Neither HIV-19533 (R5 isolate) nor HIV-1LAI (X4 isolate) penetrated into purified astrocytes. In contrast, mixed CNS cell cultures were infected by HIV-19533 and this was inhibited by anti-CD4 mAb in 4/4 tested cultures and by anti-CCR5 mAb in 2/4. Thus, the HIV-1 R5 strain requires CD4 to penetrate into brain cells, suggesting that CCR5 cannot be used as the primary receptor for M-tropic HIV-1 strains in astrocytes. Moreover, inconstant inhibition of HIV-1 entry by anti-CCR5 mAb supports the existence of alternative coreceptors for penetration of M-tropic isolates into brain cells. GLIA 34:165,177, 2001. © 2001 Wiley-Liss, Inc. [source]


Prognostic significance of integrin-linked kinase1 overexpression in astrocytoma

INTERNATIONAL JOURNAL OF CANCER, Issue 6 2010
Jun Li
Abstract Integrin-linked kinase 1 (ILK1), a member of the serine/threonine kinases, has been demonstrated to be associated with numerous biological and pathological processes. However, the clinical and functional significance of ILK1 expression has not been characterized previously in human astrocytoma. In this study, we found that ILK1 was overexpressed, at both mRNA and protein levels, in astrocytoma cell lines as compared with normal human astrocytes. The ILK1 mRNA and protein were significantly increased up to 5.6-fold and 10.1-fold, respectively, in primary astrocytoma in comparison with the paired adjacent noncancerous brain tissues obtained from the same patient. Furthermore, immunohistochemical analysis revealed that ILK1 protein was positive in 208 of 228 (91.2%) paraffin-embedded archival astrocytoma specimens. Statistical analysis suggested that the upregulation of ILK1 was significantly correlated with the histological grading of astrocytoma (p = 0.000), and that patients with high ILK1 level exhibited shorter survival time (p < 0.001). Multivariate analysis revealed that ILK1 upregulation might be an independent prognostic indicator for the survival of patients with astrocytoma. Taken together, our results suggest that ILK1 might represent a novel and useful prognostic marker for astrocytoma and play a role during the development and progression of the disease. [source]


Transcriptional regulation of human excitatory amino acid transporter 1 (EAAT1): cloning of the EAAT1 promoter and characterization of its basal and inducible activity in human astrocytes

JOURNAL OF NEUROCHEMISTRY, Issue 6 2003
Seon-Young Kim
Abstract Excitatory amino acid transporter 1 (EAAT1) is one of the two glial glutamate transporters that clear the extracellular glutamate generated during neuronal signal transmission. Here, we cloned and characterized a 2.1-kb promoter region of human EAAT1 and investigated its function in the transcriptional regulation of the EAAT1 gene in human primary astrocytes. The full-length promoter region lacked TATA and CCAAT boxes and an initiator element, it contained several potential transcription factor-binding sites and it exhibited promoter activity in primary astrocytes and in several types of transformed cells. Consecutive 5,-deletion analysis of the EAAT1 promoter indicated the presence of negative and positive regulatory regions and a putative core promoter between ,57 bp and +20 bp relative to the transcription start site (TSS). The core promoter contained a single GC-box in position ,52/,39 and one E-box near the TSS and the GC-box site that was responsible for 90% of the basal promoter activity as determined by mutational analysis. Electrophoretic mobility shift, supershift and competition assays demonstrated binding of stimulating proteins (Sp) 1 and 3 to the GC-box and upstream stimulating factor (USF) 1 to the E-box. Treatment of primary human astrocytes with cellular modulators 8-bromo cyclic AMP and epidermal growth factor increased EAAT1 promoter activity in transient transfection assays and increased cellular EAAT1 mRNA expression and glutamate uptake by astrocytes. Conversely, tumor necrosis factor-, reduced both EAAT promoter activity and cellular EAAT1 mRNA expression. These results enable studies of transcriptional regulation of EAAT1 gene at the promoter level. [source]


Expression of plasminogen activator inhibitor-1 and protease nexin-1 in human astrocytes: Response to injury-related factors

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 11 2010
Karin Hultman
Abstract Astrocytes play a diverse role in central nervous system (CNS) injury. Production of the serine protease inhibitors (serpins) plasminogen activator inhibitor-1 (PAI-1) and protease nexin-1 (PN-1) by astrocytes may counterbalance excessive serine protease activity associated with CNS pathologies such as ischemic stroke. Knowledge regarding the regulation of these genes in the brain is limited, so the objective of the present study was to characterize the effects of injury-related factors on serpin expression in human astrocytes. Native human astrocytes were exposed to hypoxia or cytokines, including interleukin-6 (IL-6), IL-1,, tumor necrosis factor-, (TNF-,), IL-10, transforming growth factor-, (TGF-,), and TGF-, for 0,20 hr. Serpin mRNA expression and protein secretion were determined by real-time RT-PCR and ELISA, respectively. Localization of PAI-1 and PN-1 in human brain tissue was examined by immunohistochemistry. Hypoxia and all assayed cytokines induced a significant increase in PAI-1 expression, whereas prolonged treatment with IL-1, or TNF-, resulted in a significant down-regulation. The most pronounced induction of both PAI-1 and PN-1 was observed following early treatment with TGF-,. In contrast to PAI-1, the PN-1 gene did not respond to hypoxia. Positive immunoreactivity for PAI-1 in human brain tissue was demonstrated in reactive astrocytes within gliotic areas of temporal cortex. We show here that human astrocytes express PAI-1 and PN-1 and demonstrate that this astrocytic expression is regulated in a dynamic manner by injury-related factors. © 2010 Wiley-Liss, Inc. [source]


Fiber-knob modifications enhance adenoviral tropism and gene transfer in malignant glioma

THE JOURNAL OF GENE MEDICINE, Issue 3 2007
Sophy Zheng
Abstract Background Malignant gliomas remain refractory to Ad5-mediated gene therapy due to deficiency of the coxsackie adenovirus receptor on tumor cells. The purpose of this study was to evaluate whether changes in adenoviral tropism can enhance gene transfer in the context of malignant glioma. Methods We have identified several receptors that are over-expressed on tumor cells and created a series of pseudotyped Ad5 vectors that recognize these receptors: Ad5-RGD which binds ,v,3/,v,5 integrins; Ad5/3 which contains adenovirus serotype 3 knob and binds to CD46; Ad5-Sigma which incorporates the reovirus sigma knob and binds to junctional adhesion molecule-1; and Ad5-pk7 which contains the polylysine motif and binds heparan sulfate proteoglycans. We also investigated the Ad5-CAV1 vector, which contains the knob of canine adenovirus type 1, a virus previously shown to infect glioma via an unknown mechanism. In this study, we compared these modified vectors for their ability to promote the expression of luciferase transgene both in vitro and in vivo. Results Our results indicate that all five modified vectors attained higher mean luciferase activity vs. control. Among them, Ad5-CAV1 and Ad5-pk7 attained the highest transduction efficiency independent of different tumor lines or infection time. Ad5-Sigma and Ad5-pk7 also demonstrated the least nonspecific infection in normal human astrocytes. Most importantly, Ad5-pk7 achieved 1000-fold increased transgene expression in human glioma xenografts in vivo. Conclusions These results indicate that modifications of adenoviral tropism can enhance gene transfer in tumors that are poorly susceptible to adenoviral vectors and warrant further development of Ad5-pk7 for glioma gene therapy. Copyright © 2007 John Wiley & Sons, Ltd. [source]