Human Arrival (human + arrival)

Distribution by Scientific Domains


Selected Abstracts


Patterns of endemic extinctions among island bird species

ECOGRAPHY, Issue 6 2002
Eric Biber
The relationship between island biogeography and the vulnerability of island biota to extinction as a result of human activities was examined. In particular, this study analyzed whether island area, maximum elevation of an island, isolation from the nearest continental landmass, or date of human colonization had statistically significant relationships with the proportion of endemic island bird species that have become endangered or extinct. The study examined islands or island groups with endemic bird species, and which have never been connected to a continental landmass. Both modern and fossil bird species were incorporated into the analysis. Islands that were colonized by humans earliest had the lowest proportion of modern species alone, and modern and fossil species combined, that have gone extinct. However, date of human arrival was not correlated with the proportion of modern species that are endangered. Maximum elevation of an island was negatively correlated with the proportion of modern species that are extinct, and was positively correlated with the proportion of modern species that are endangered. Area was negatively correlated with the proportion of modern species that are endangered. Isolation of islands was not significantly correlated with the proportion of modern species extinct or endangered, but was positively correlated with the proportion of modern and fossil species combined that have gone extinct. These results indicate that the initial spasm of island bird extinctions due to human contact may have, in part, passed. They also indicate that bird species on islands colonized earliest by humans may have had more time to adapt to the presence of man and his commensal species, resulting in reduced extinction rates. [source]


The uncertain blitzkrieg of Pleistocene megafauna

JOURNAL OF BIOGEOGRAPHY, Issue 4 2004
Barry W. Brook
Abstract We investigated, using meta-analysis of empirical data and population modelling, plausible scenarios for the cause of late Pleistocene global mammal extinctions. We also considered the rate at which these extinctions may have occurred, providing a test of the so-called ,blitzkrieg' hypothesis, which postulates a rapid, anthropogenically driven, extinction event. The empirical foundation for this work was a comprehensive data base of estimated body masses of mammals, comprising 198 extinct and 433 surviving species > 5 kg, which we compiled through an extensive literature search. We used mechanistic population modelling to simulate the role of human hunting efficiency, meat off-take, relative naivety of prey to invading humans, variation in reproductive fitness of prey and deterioration of habitat quality (due to either anthropogenic landscape burning or climate change), and explored the capacity of different modelling scenarios to recover the observed empirical relationship between body mass and extinction proneness. For the best-fitting scenarios, we calculated the rate at which the extinction event would have occurred. All of the modelling was based on sampling randomly from a plausible range of parameters (and their interactions), which affect human and animal population demographics. Our analyses of the empirical data base revealed that the relationship between body mass and extinction risk relationship increases continuously from small- to large-sized animals, with no clear ,megafaunal' threshold. A logistic ancova model incorporating body mass and geography (continent) explains 92% of the variation in the observed extinctions. Population modelling demonstrates that there were many plausible mechanistic scenarios capable of reproducing the empirical body mass,extinction risk relationship, such as specific targeting of large animals by humans, or various combinations of habitat change and opportunistic hunting. Yet, given the current imperfect knowledge base, it is equally impossible to use modelling to isolate definitively any single scenario to explain the observed extinctions. However, one universal prediction, which applied in all scenarios in which the empirical distribution was correctly predicted, was for the extinctions to be rapid following human arrival and for surviving fauna to be suppressed below their pre-,blitzkrieg' densities. In sum, human colonization in the late Pleistocene almost certainly triggered a ,blitzkrieg' of the ,megafauna', but the operational details remain elusive. [source]


Understanding Late Quaternary extinctions: the case of Myotragus balearicus (Bate, 1909)

JOURNAL OF BIOGEOGRAPHY, Issue 5 2003
Pere Bover
Abstract Aim, In this study we present a new view on the extinction of Myotragus balearicus, an extinct highly modified dwarf caprine from the Gymnesic Islands (or eastern Balearic Islands), as a methodological case study for interpretation of Late Quaternary extinctions (LQEs). Methods, We analyse all available 14C ages obtained from M. balearicus bones from the uppermost part of the Pleistocene and the Holocene, together with the available chronological data of the putative causes of Myotragus extinction. Results, It has been possible to define two critical dates that allow us to establish an ,uncertainty period for the Myotragus extinction' (UPME) in each analysed island (Mallorca, Menorca and Cabrera). For Mallorca, the UPME corresponds to the interval c. 3700 to 2030 calbc (i.e. c. 1670 years of uncertainty). In the case of Menorca, the UPME spans from 10,000 to 1930 calbc (8070 years of uncertainity). In Cabrera the UPME is placed between 3650 and 300 calbc (3350 years of uncertainty). These periods, together with a review of the available information on the chronology of human arrival and the chronology of Holocene climatic change, shed light on the possible causes of the extinction of this species. Main conclusions, Extinction of Myotragus because of climatic change can be definitively rejected. The Myotragus extinction must be attributed to the rapid effects of the first human occupation. The use of uncertainity periods for the disappearance of species represents a useful tool for the analysis of LQEs. [source]


Redating the onset of burning at Lynch's Crater (North Queensland): implications for human settlement in Australia

JOURNAL OF QUATERNARY SCIENCE, Issue 8 2001
C. S. M. Turney
Abstract Lynch's Crater preserves a continuous, high-resolution record of environmental changes in north Queensland. This record suggests a marked increase in burning that appears to be independent of any known major climatic boundaries. This increase is accompanied, or closely followed, by the virtually complete replacement of rainforest by sclerophyll vegetation. The absence of any major climatic shift associated with this increase in fire frequency therefore has been interpreted as a result of early human impact in the area. The age for this increase in burning, on the basis of conventional radiocarbon dating, was previously thought to be approximately 38 000 14C yr BP, supporting the traditional model for human arrival in Australia at 40 000 14C yr BP Here we have applied a more rigorous pre-treatment and graphitisation procedure for radiocarbon dating samples from the Lynch's Crater sequence. These new dates suggest that the increase in fire frequency occurred at 45 000 14C yr BP, supporting the alternative view that human occupation of Australia occurred by at least 45 000,55 000 cal. yr BP. Copyright © 2001 John Wiley & Sons, Ltd. [source]