Humoral Autoimmunity (humoral + autoimmunity)

Distribution by Scientific Domains


Selected Abstracts


Cellular and humoral autoimmunity directed at bile duct epithelia in murine biliary atresia,,

HEPATOLOGY, Issue 5 2006
Cara L. Mack
Biliary atresia is an inflammatory fibrosclerosing lesion of the bile ducts that leads to biliary cirrhosis and is the most frequent indication for liver transplantation in children. The pathogenesis of biliary atresia is not known; one theory is that of a virus-induced, subsequent autoimmune-mediated injury of bile ducts. The aim of this study was to determine whether autoreactive T cells and autoantibodies specific to bile duct epithelia are present in the rotavirus (RRV)- induced murine model of biliary atresia and whether the T cells are sufficient to result in bile duct inflammation. In vitro analyses showed significant increases in IFN-,,producing T cells from RRV-diseased mice in response to bile duct epithelial autoantigen. Adoptive transfer of the T cells from RRV-diseased mice into naïve syngeneic SCID recipients resulted in bile duct,specific inflammation. This induction of bile duct pathology occurred in the absence of detectable virus, indicating a definite response to bile duct autoantigens. Furthermore, periductal immunoglobulin deposits and serum antibodies reactive to bile duct epithelial protein were detected in RRV-diseased mice. In conclusion, both cellular and humoral components of autoimmunity exist in murine biliary atresia, and the progressive bile duct injury is due in part to a bile duct epithelia,specific T cell,mediated immune response. The role of cellular and humoral autoimmunity in human biliary atresia and possible interventional strategies therefore should be the focus of future research. (HEPATOLOGY 2006;44:1231,1239.) [source]


Decay-accelerating factor 1 (Daf1) deficiency exacerbates xenobiotic-induced autoimmunity

IMMUNOLOGY, Issue 1 2010
Christopher B. Toomey
Summary Absence of decay-accelerating factor 1 (Daf1) has been shown to enhance T-cell responses and autoimmunity via increased expression of specific cytokines, most notably interferon (IFN)-,. To determine if Daf1 deficiency can exacerbate IFN-,-dependent murine mercury-induced autoimmunity (mHgIA), C57/BL6 Daf1+/+ and Daf1,/, mice were exposed to mercuric chloride (HgCl2) and examined for differences in cytokine expression, T-cell activation and features of humoral autoimmunity. In the absence of Daf1, mHgIA was exacerbated, with increased serum immunoglobulin G (IgG), anti-nuclear autoantibodies (ANAs) and anti-chromatin autoantibodies. This aggravated response could not be explained by increased T-cell activation but was associated with increased levels of IFN-,, interleukin (IL)-2, IL-4 and IL-10 but not IL-17 in Daf1-deficient mice. Anti-CD3/anti-CD28 costimulation of Daf1,/, CD4+ T cells in vitro was also found to increase cytokine expression, but the profile was different from that of mHgIA, suggesting that the cytokine changes observed in Daf1 deficiency reflect a response to mercury. The role of Daf1 in influencing cytokine expression was further examined by stimulation of CD4+ T cells in the presence of anti-CD3 and CD97, a molecular partner for Daf1. This resulted in increased IL-10, decreased IL-17 and IL-21 and decreased IFN-,. These findings demonstrate that the absence of Daf1 exacerbates mHgIA, with changes in the profile of expressed cytokines. Interaction between Daf1 and its molecular partner CD97 was found to modify expression of mHgIA-promoting cytokines, suggesting a possible approach for the suppression of overaggressive cytokine production in autoimmunity. [source]


Constitutive overexpression of BAFF in autoimmune-resistant mice drives only some aspects of systemic lupus erythematosus,like autoimmunity

ARTHRITIS & RHEUMATISM, Issue 8 2010
William Stohl
Objective To determine whether overexpression of BAFF can promote systemic lupus erythematosus (SLE),like autoimmunity in mice that are otherwise autoimmune-resistant. Methods We used class II major histocompatibility complex (MHC),deficient C57BL/6 (B6) mice as a model of resistance to SLE and Sles1 -bearing B6 mice as a model of resistance to the autoantibody-promoting capacity of the Sle1 region. We generated BAFF-transgenic (Tg) counterparts to these respective mice and evaluated lymphocyte phenotype, serologic autoimmunity, renal immunopathology, and clinical disease in the BAFF-Tg and non-Tg mouse sets. Results Although constitutive BAFF overexpression did not lead to B cell expansion in class II MHC,deficient B6 mice, it did lead to increased serum IgG autoantibody levels. Nevertheless, renal immunopathology was limited, and clinical disease did not develop. In B6 and B6.Sle1 mice, constitutive BAFF overexpression led to increased numbers of B cells and CD4+ memory cells, as well as increased serum IgG and IgA autoantibody levels. Renal immunopathology was modestly greater in BAFF-Tg mice than in their non-Tg counterparts, but again, clinical disease did not develop. Introduction of the Sles1 region into B6.Sle1.Baff mice abrogated the BAFF-driven increase in CD4+ memory cells and the Sle1 -driven, but not the BAFF-driven, increase in serum IgG antichromatin levels. Renal immunopathology was substantially ameliorated. Conclusion Although constitutive BAFF overexpression in otherwise autoimmune-resistant mice led to humoral autoimmunity, meaningful renal immunopathology and clinical disease did not develop. This raises the possibility that BAFF overexpression, even when present, may not necessarily drive disease in some SLE patients. This may help explain the heterogeneity of the clinical response to BAFF antagonists in human SLE. [source]


Early targets of nuclear RNP humoral autoimmunity in human systemic lupus erythematosus

ARTHRITIS & RHEUMATISM, Issue 3 2009
Brian D. Poole
Objective The U1 small nuclear RNPs are common targets of autoantibodies in lupus and other autoimmune diseases. However, the etiology and progression of autoimmune responses directed against these antigens are not well understood. The aim of this study was to use a unique collection of serial samples obtained from patients before and after the development of nuclear RNP (nRNP) antibodies to investigate early humoral events in the development of anti-nRNP autoimmunity. Methods Lupus patients with sera available from both before and after the development of nRNP antibody precipitin were identified from the Oklahoma Clinical Immunology Serum Repository. Antibodies in the serial samples were analyzed by enzyme-linked immunosorbent assay, Western blotting, solid-phase epitope mapping, and competition assays. Results The first-detected nRNP antibodies targeted 6 common initial epitopes in nRNP A, 2 in nRNP C, and 9 in nRNP 70K. The initial epitopes of nRNP A and nRNP C were significantly enriched for proline and shared up to 95% sequence homology. The initial nRNP 70K humoral epitopes differed from those of nRNP A and nRNP C. The initial antibodies to nRNP A and nRNP C were cross-reactive with the SmB,-derived peptide PPPGMRPP. Antibody binding against all 3 nRNP subunits diversified significantly over time. Conclusion Autoantibodies to nRNP A and nRNP C initially targeted restricted, proline-rich motifs. Antibody binding subsequently spread to other epitopes. The similarity and cross-reactivity between the initial targets of nRNP and Sm autoantibodies identifies a likely commonality in cause and a focal point for intermolecular epitope spreading. [source]