Home About us Contact | |||
Huge Areas (huge + area)
Selected AbstractsThe Nordic Volcanological Institute: understanding volcanoes at spreading centresGEOLOGY TODAY, Issue 2 2009Kent Brooks The Nordic countries (known as ,Norden') are not immediately associated with volcanoes: Norway with folded mountains cut by fjords and its offshore oil and gas deposits, Sweden and Finland by the western part of the Baltic shield, a huge area of Precambrian rocks, of which gneisses form a large part, and Denmark, a country of Mesozoic and Cenozoic rocks, where glacial, superficial deposits are of major importance. But Norden also includes Iceland, where everyone immediately thinks of volcanoes and glaciers. Clearly volcanological research would be expected to be a major priority for the Icelandic nation. However, in the other Nordic countries old volcanic and other igneous rocks play a significant role, comprising a large part of the Precambrian and Caledonian terrains and being a key to many of the commercial mineral deposits which play a major role in the economies of Norway, Sweden and Finland. Even Denmark, a country of sedimentary rocks has an impressive sequence of Paleogene volcanic ashes and the Faeroe Islands, made up almost entirely of basalts, are part of Denmark. [source] Dispersal of aquatic organisms by waterbirds: a review of past research and priorities for future studiesFRESHWATER BIOLOGY, Issue 3 2002JORDI FIGUEROLA 1.,Inland wetlands constitute ecological islands of aquatic habitat often isolated by huge areas of non-suitable terrestrial habitats. Although most aquatic organisms lack the capacity to disperse by themselves to neighbouring catchments, many species present widespread distributions consistent with frequent dispersal by migratory waterbirds. 2.,A literature review indicates that bird-mediated passive transport of propagules of aquatic invertebrates and plants is a frequent process in the field, at least at a local scale. Both endozoochory (internal transport) and ectozoochory (external transport) are important processes. 3.,The characteristics of the dispersed and the disperser species that facilitate such transport remain largely uninvestigated, but a small propagule size tends to favour dispersal by both internal and external transport. 4.,We review the information currently available on the processes of waterbird-mediated dispersal, establishing the limits of current knowledge and highlighting problems with research methods used in previous studies. We also identify studies required in the future to further our understanding of the role of such dispersal in aquatic ecology. [source] Going underground: in search of Carboniferous coal forestsGEOLOGY TODAY, Issue 5 2009Howard J. Falcon-Lang The development of coal forests during the Carboniferous is one of the best-known episodes in the history of life. Although often reconstructed as steamy tropical rainforests, these ancient ecosystems were a far cry from anything we might encounter in the Amazon today. Bizarre giant club-mosses, horsetails and tree ferns were the dominant plants, not flowering trees as in modern rainforests. At their height, coal forests stretched all the way from Kansas to Kazakhstan, spanning the entire breadth of tropical Pangaea. Most of what we know of their biodiversity and ecology has been quite literally mined out of the ground through two centuries of hard labour. Without coal mining, our knowledge would be greatly impoverished. Over the past few years, we've been exploring underground coal mines in the United States, where entire forested landscapes have been preserved intact over huge areas. Never before have geologists had the opportunity to walk out through mile upon mile of fossilized forest. In this feature article, we describe some of our recent explorations and attempt to shed new light on these old fossils. [source] Climate change and grasslands through the ages: an overviewGRASS & FORAGE SCIENCE, Issue 2 2007L. 't Mannetje Summary Change from cool to warm temperatures and vice versa have occurred throughout geological time. During the Jurassic and Cretaceous periods (206,65 million years ago, Ma) the climate was more uniformly warm and moist than at present and tropical rainforests were widespread. Grasses evolved during the Jurassic period and they expanded greatly as the climate differentiated with reduced rainfall and temperatures. C4 -grasses probably arose during the Oligocene period (24,35 Ma). During the Miocene period (23·8,5·3 Ma) grasslands expanded into huge areas (e.g. prairies in the USA, steppe in Eurasia, and pampas and llanos in South America). During the Quaternary period (1·8 Ma till now) some twenty-two different ice ages with periodicities of about 100 000 years occurred. Eighteen-thousand years ago, north-western Europe had a polar climate with tundra vegetation and the Mediterranean region was covered by steppe. During that time Amazonia was so dry that it was covered in extensive areas of savanna and the Sahara expanded rapidly. Only in the last 10 000 years has a closed rainforest covered the Amazonian region again. However, 9000 years ago a brief period of global warming caused excessive rains, which caused the sea and river levels to rise in north-western Europe with tremendous loss of life. The present period of extreme dryness in the Sahara only started some 5000 years ago and then the desert expanded rapidly into the Sahel. Before that the Sahara was covered by steppe. Global warming took place between about ad 900 and about ad 1200 or 1300 just before the Little Ice Age (1550,1700 ad). The article concludes with a description of temperature and vegetation changes that are occurring in Europe at present. It is predicted that C4 -grasses, which are already present in southern Europe, will further expand but that, in the short term, land abandonment will have much more deleterious effects than temperature change due to increased wild fires, loss of biodiversity and desertification. [source] Climate change and range expansion of an aggressive bark beetle: evidence of higher beetle reproduction in naïve host tree populationsJOURNAL OF APPLIED ECOLOGY, Issue 5 2010Timothy J. Cudmore Summary 1.,Hosts may evolve defences that make them less susceptible and suitable to herbivores impacting their fitness. Due to climate change-driven range expansion, herbivores are encountering naïve host populations with increasing frequency. 2.,Aggressive bark beetles are among the most important agents of disturbance in coniferous forest ecosystems. The presence of bark beetle outbreaks in areas with a historically unsuitable climate, in part a consequence of climate change, provided an opportunity to assess the hypothesis that the mountain pine beetle Dendroctonus ponderosae has higher reproductive success in lodgepole pine Pinus contorta trees growing in areas that have not previously experienced frequent outbreaks. 3.,We felled and sampled mountain pine beetle-killed trees from historically climatically suitable and unsuitable areas, i.e. areas with and without a historical probability of frequent outbreaks. Reproductive success was determined from a total of 166 trees from 14 stands. 4.,Brood productivity was significantly affected by climatic suitability class, such that mean brood production per female increased as historical climatic suitability decreased. 5.,Synthesis and applications. The current study demonstrates that the mountain pine beetle has higher reproductive success in areas where its host trees have not experienced frequent beetle epidemics, which includes much of the current outbreak area in north central British Columbia. This increased productivity of mountain pine beetle is likely to have been a key reason for the rapid population buildup that resulted in unprecedented host tree mortality over huge areas in western Canada. The outbreak thus provides an example of how climate change-driven range expansion of native forest insects can have potentially disastrous consequences. Since an increased reproductive success is likely to accelerate the progression of outbreaks, it is particularly critical to manage forests for the maintenance of a mosaic of species and age classes at the landscape level in areas where host tree populations are naïve to eruptive herbivores. [source] |