Annular Mode (annular + mode)

Distribution by Scientific Domains

Kinds of Annular Mode

  • southern annular mode


  • Selected Abstracts


    Ecological repercussions of historical fish extraction from the Southern Ocean

    FISH AND FISHERIES, Issue 1 2009
    David G Ainley
    Abstract A major mid-1980s shift in ecological structure of significant portions of the Southern Ocean was partially due to the serial depletion of fish by intensive industrial fishing, rather than solely to climate factors as previously hypothesized. Over a brief period (1969,1973), several finfish stocks were on average reduced to <50%, and finally (mid-1980s) to <20%, of original size. Despite management actions, few stocks have recovered and some are still declining. Most affected species exhibit K-selected life-history patterns, and before exploitation presumably fluctuated in accordance with infrequent strong year classes, as is true of such fish elsewhere. A climate regime, the Southern Annular Mode, once oscillated between two states, but has remained in its ,positive mode' since the time of the fish extraction. This may have increased finfish vulnerability to exploitation. As breeding stocks decreased, we hypothesize that availability of annually produced juvenile fish fed upon by upper-level predators remained low. Correlations between predator populations and fish biomass in predator foraging areas indicate that southern elephant seal Mirounga leonina, Antarctic fur seal Arctocephalus gazella, gentoo penguin Pygoscelis papua, macaroni penguin Eudyptes chrysolphus and ,imperial' shag Phalacrocorax spp. , all feeding extensively on these fish, and monitored at Marion, Crozet, Kerguelen, Heard, South Georgia, South Orkney and South Shetland Islands, where fishing was concentrated , declined simultaneously during the two periods of heavy fishing. These patterns indicate the past importance of demersal fish as prey in Antarctic marine systems, but determining these interactions' ecological mechanisms may now be impossible. [source]


    Penguin responses to climate change in the Southern Ocean

    GLOBAL CHANGE BIOLOGY, Issue 7 2009
    JAUME FORCADA
    Abstract Penguins are adapted to live in extreme environments, but they can be highly sensitive to climate change, which disrupts penguin life history strategies when it alters the weather, oceanography and critical habitats. For example, in the southwest Atlantic, the distributional range of the ice-obligate emperor and Adélie penguins has shifted poleward and contracted, while the ice-intolerant gentoo and chinstrap penguins have expanded their range southward. In the Southern Ocean, the El Niño-Southern Oscillation and the Southern Annular Mode are the main modes of climate variability that drive changes in the marine ecosystem, ultimately affecting penguins. The interaction between these modes is complex and changes over time, so that penguin responses to climate change are expected to vary accordingly, complicating our understanding of their future population processes. Penguins have long life spans, which slow microevolution, and which is unlikely to increase their tolerance to rapid warming. Therefore, in order that penguins may continue to exploit their transformed ecological niche and maintain their current distributional ranges, they must possess adequate phenotypic plasticity. However, past species-specific adaptations also constrain potential changes in phenology, and are unlikely to be adaptive for altered climatic conditions. Thus, the paleoecological record suggests that penguins are more likely to respond by dispersal rather than adaptation. Ecosystem changes are potentially most important at the borders of current geographic distributions, where penguins operate at the limits of their tolerance; species with low adaptability, particularly the ice-obligates, may therefore be more affected by their need to disperse in response to climate and may struggle to colonize new habitats. While future sea-ice contraction around Antarctica is likely to continue affecting the ice-obligate penguins, understanding the responses of the ice-intolerant penguins also depends on changes in climate mode periodicities and interactions, which to date remain difficult to reproduce in general circulation models. [source]


    On the interannual wintertime rainfall variability in the Southern Andes

    INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 5 2010
    M. H. González
    Abstract The paper concentrates on the analysis of the interannual variability of wintertime rainfall in the Southern Andes. Besides the socio-economic relevance of the region, mainly associated with hydroelectric energy production, the study of the climate variability in that area has not received as much attention as others along the Andes. The results show that winter rainfall explains the largest percentage of regional total annuals. A principal component analysis (PCA) of the winter rainfall anomalies showed that the regional year-to-year variability is mostly explained by three leading patterns. While one of them is significantly associated with both the El Niño Southern Oscillation (ENSO), and the Southern Annular Mode (SAM), the other two patterns are significantly related to interannual changes of the sea surface temperature (SST) anomalies in the tropical Indian Ocean. Specifically, changes in the ocean surface conditions at both tropical basins induce in the atmospheric circulation the generation of Rossby wave trains that extend along the South Pacific towards South America, and alter the circulation at the region under study. The relationship between variability in the Indian Ocean and the Andes climate variability has not been previously addressed. Therefore, this result makes a significant contribution to the identification of the sources of predictability in South America with relevant consequences for future applications in seasonal predictions. Copyright © 2009 Royal Meteorological Society [source]


    Variability and trends in the directional wave climate of the Southern Hemisphere

    INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 4 2010
    Mark A. Hemer
    Abstract The effect of interannual climate variability and change on the historic, directional wave climate of the Southern Hemisphere is presented. Owing to a lack of in situ wave observations, wave climate in the Southern Hemisphere is determined from satellite altimetry and global ocean wave models. Altimeter data span the period 1985 to present, with the exception of a 2-year gap in 1989,1991. Interannual variability and trends in the significant wave height are determined from the satellite altimeter record (1991 to present), and the dominant modes of variability are identified using an empirical orthogonal function (EOF) analysis. Significant wave heights in the Southern Ocean are observed to show a strong positive correlation with the Southern Annular Mode (SAM), particularly during Austral autumn and winter months. Correlation between altimeter derived significant wave heights and the Southern Oscillation Index is observed in the Pacific basin, which is consistent with several previous studies. Variability and trends of the directional wave climate are determined using the ERA-40 Waves Re-analysis for the period 1980,2001. Significant wave height, mean wave period and mean wave direction data are used to describe the climate of the wave energy flux vector. An EOF analysis of the wave energy flux vector is carried out to determine the dominant modes of variability of the directional seasonal wave energy flux climate. The dominant mode of variability during autumn and winter months is strongly correlated to the SAM. There is an anti-clockwise rotation of wave direction with the southward intensification of the Southern Ocean storm belt associated with the SAM. Clockwise rotation of flux vectors is observed in the Western Pacific Ocean during El-Nino events. Directional variability of the wave energy flux in the Western Pacific Ocean has previously been shown to be of importance to sand transport along the south-eastern Australian margin, and the New Zealand region. The directional variability of the wave energy flux of the Southern Ocean associated with the SAM is expected to be of importance to the wave-driven currents responsible for the transport of sand along coastal margins in the Southern Hemisphere, in particular those on the Southern and Western coastal margins of the Australian continent. Copyright © 2009 Royal Meteorological Society [source]


    Recent accumulation variability and change on the Antarctic Peninsula from the ERA40 reanalysis

    INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 11 2008
    Georgina M. Miles
    Abstract The Antarctic Peninsula has displayed significant climate change over recent decades. Understanding contemporaneous changes in accumulation is made difficult because the region's complex orography means that ice-core data are not necessarily representative of a wider area. In this paper, the patterns of regional spatial accumulation variability across the Antarctic Peninsula region are presented, based on an Empirical Orthogonal Function (EOF) analysis of European Centre for Medium Range Forecasts Reanalysis (ERA40) data over the 23-year period from 1979 through 2001. Annual and seasonal trends in the sign and strength of these patterns are identified, as is their relationship with mean sea level pressure, temperature and indices of large-scale circulation variability. The results reveal that the first pattern of accumulation variability on the Peninsula is primarily related to pressure in the circumpolar trough and the second pattern to temperature: together the two EOFs explain ,45,65% of the annual/seasonal accumulation. The strongest positive trend in an EOF occurs with EOF2 in the austral autumn March-April-May (MAM). This is highly correlated with the Southern Annular Mode (SAM) in this season, suggesting stronger westerly winds have caused an increase in orographic precipitation along the west Antarctic Peninsula. A significant correlation with ENSO occurs only in the winter EOF1, associated with blocking in the Bellingshausen Sea. Inter-annual ERA40 accumulation is shown to compare favourably with an ice core in the south of the Peninsula, but, for a variety of reasons, correlates poorly with accumulation as measured in an ice core from the northern tip. Opposite trends in accumulation at these two sites can be explained by the spatial pattern and trend of EOF2 in MAM and thus by recent changes in the SAM. The results of this study will aid in the understanding of temporal accumulation changes observed in the regional ice-core record. Copyright © 2007 Royal Meteorological Society [source]


    Southern hemisphere cyclones and anticyclones: recent trends and links with decadal variability in the Pacific Ocean

    INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 11 2007
    Dr Alexandre Bernardes Pezza
    Abstract The aim of this paper is to study the association between the extratropical Southern Hemisphere and the decadal variability in the Pacific Ocean (PO). We discuss a pattern of coherent large-scale anomalies and trends in cyclone and anticyclone behaviour in light of the climate variability in the PO over the ERA40 reanalysis period (1957,2002). The two representative PO indices are the Pacific Decadal and Interdecadal Oscillations (PDO and IPO), and here the PDO is chosen owing to it being less associated with the southern oscillation index (SOI). Composites of the indicators of the density and intensity of cyclones/anticyclones given by an automatic tracking scheme were calculated for the years when the PDOI was more than one standard deviation above or below its mean. Although the ERA40 is not free from noise and assimilation changes, the results show a large-scale feature, which seems to be robust and agrees with earlier studies using different data sets. The sea-level pressure shows a strong annular structure related to the PDO, which is not seen for the SOI, with lower pressure around Antarctica during the positive phase and vice versa. More intense (and fewer) cyclones and anticyclones were observed during the positive PDO. This is less consistent for the SOI, particularly during the summer when a different PDO/SOI pattern arises at high latitudes. The trends project a pattern coincident with the positive PDO phase and seem to be linked with the main climate shift in the late seventies. Trends observed over the Tasman Sea are consistent with declining winter rainfall over southeastern Australia. Most patterns are statistically significant and seem robust, but random changes in ENSO may play a part, to a certain degree, in modulating the results, and a physical mechanism of causality has not been demonstrated. Although global warming and related changes in the Southern Annular Mode (SAM) may also help explain the observed behaviour, the large-scale response presented here provides a new insight and would be of considerable interest for further modelling studies. Copyright © 2007 Royal Meteorological Society [source]


    Simultaneous Atlantic,Pacific blocking and the Northern Annular Mode

    THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 636 2008
    Tim Woollings
    Abstract A synoptic situation termed ,high-latitude blocking' (HLB) is shown to occur frequently in both the Atlantic and Pacific sectors, and to result in flow anomalies very similar to those associated with the negative phase of the Northern Annular Mode (NAM) in the respective sector. There is a weak but significant link between the occurrence of HLB in the two sectors, with Atlantic HLB tending to lead Pacific HLB by 1,3 days. This link arises from rare events in which both sectors are almost simultaneously affected by a large-scale wave-breaking event which distorts the polar trough over Northern Canada. In several cases the tropospheric wave-breaking occurs in tandem with a large-scale disturbance of the stratospheric polar vortex. There is, therefore, a physical link between the Atlantic and Pacific sectors, but analysis suggests that this does not contribute to determining the pattern of the NAM, as conventionally defined from monthly mean data. However, an alternative version of the NAM, derived directly from daily data, does appear to reflect this physical link. These conflicting results highlight the sensitivity of the NAM to the period over which data are averaged. Copyright © 2008 Royal Meteorological Society [source]


    Extreme precipitation over Southeastern Brazil in the austral summer and relations with the Southern Hemisphere annular mode

    ATMOSPHERIC SCIENCE LETTERS, Issue 1 2010
    Fernanda Cerqueira Vasconcellos
    Abstract Southeastern Brazil is a highly industrialized and populated region which largely contributes to the country's economy. Extreme precipitation over this region can cause floods and landslides occurrences or lack of precipitation that can affect many sectors of economy. The objective of this work is to identify atmospheric characteristics associated with austral summer extreme precipitation over part of Southeastern Brazil. The atmospheric characteristics obtained from wet and dry composites suggest that extreme precipitation was associated with anomalous circulation over the region, forced by a PSA-like wavetrain intensified by the Southern Annular Mode. Copyright © 2010 Royal Meteorological Society [source]


    Atmospheric moisture budget over Antarctica and the Southern Ocean based on the ERA-40 reanalysis

    INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 15 2008
    Hanna Tietäväinen
    Abstract The atmospheric moisture budget over Antarctica and the Southern Ocean was analysed for the period 1979,2001 on the basis of the ERA-40 reanalysis of the European Centre for Medium-Range Weather Forecasts. Meridional transport by transient eddies makes the largest contribution to the southward water vapour transport. The mean meridional circulation contributes to the northward transport in the Antarctic coastal areas, but this effect is compensated by the southward transport by stationary eddies. The convergence of meridional water vapour transport is at its largest at 64,68°S, while the convergence of zonal transport is regionally important in areas of high cyclolysis. Inter-annual variations in water vapour transport are related to the southern annular mode (SAM). The eastward transport has a significant (95% confidence level) positive correlation with the SAM index, while the northward transport has a significant negative correlation with SAM near 60°S. Hydrological balance is well-achieved in the ERA-40 reanalysis: the difference between the water vapour flux convergence (based on analysis) and the net precipitation (precipitation minus evaporation, based on 24-h forecasts) is only 13 mm yr,1 (3%) over the Southern Ocean and , 8 mm yr,1 (5%) over the continental ice sheet. Over the open ocean, the analysis methodology favours the accuracy of the flux convergence. For the whole study region, the annual mean flux convergence exceeded net precipitation by 11 mm yr,1 (3%). The ERA-40 result for the mean precipitation over the Antarctic continental ice sheet in 1979,2001 is 177 ± 8 mm yr,1, while previous estimates range from 173 to 215 mm yr,1. For the period 1979,2001, the ERA-40 data do not show any statistically significant trend in precipitation over the Antarctic grounded ice sheet and ice shelves. From the ERA-40 data, the annual average net evaporation (evaporation minus condensation) is positive over the whole continent. Copyright © 2008 Royal Meteorological Society [source]


    A review of recent climate variability and climate change in southeastern Australia

    INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 7 2008
    Bradley F. Murphy
    Abstract Southeastern Australia (SEA) has suffered from 10 years of low rainfall from 1997 to 2006. A protracted dry spell of this severity has been recorded once before during the 20th century, but current drought conditions are exacerbated by increasing temperatures. Impacts of this dry decade are wide-ranging, so a major research effort is being directed to better understand the region's recent climate, its variability and climate change. This review summarizes the conditions of these 10 years and the main mechanisms that affect the climate. Most of the rainfall decline (61%) has occurred in autumn (March,May). Daily maximum temperatures are rising, as are minimum temperatures, except for cooler nights in autumn in the southwest of SEA closely related to lower rainfall. A similar rainfall decline occurred in the southwest of western Australia around 1970 that has many common features with the SEA decline. SEA rainfall is produced by mid-latitude storms and fronts, interactions with the tropics through continental-scale cloudbands and cut-off lows. El Niño-Southern Oscillation impacts on SEA rainfall, as does the Indian Ocean, but neither has a direct influence in autumn. Trends have been found in both hemispheric (the southern annular mode) and local (sub-tropical ridge) circulation features that may have played a role in reducing the number and impact of mid-latitude systems around SEA, and thus reducing rainfall. The role of many of these mechanisms needs to be clarified, but there is likely to be an influence of enhanced greenhouse gas concentrations on SEA climate, at least on temperature. Copyright © 2007 Royal Meteorological Society [source]


    Antarctic climate change during the last 50 years

    INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 3 2005
    John Turner
    Abstract An erratum has been published for this article in International Journal of Climatology 25 (8) 2005, 1147,1148. The Reference Antarctic Data for Environmental Research (READER) project data set of monthly mean Antarctic near-surface temperature, mean sea-level pressure (MSLP) and wind speed has been used to investigate trends in these quantities over the last 50 years for 19 stations with long records. Eleven of these had warming trends and seven had cooling trends in their annual data (one station had too little data to allow an annual trend to be computed), indicating the spatial complexity of change that has occurred across the Antarctic in recent decades. The Antarctic Peninsula has experienced a major warming over the last 50 years, with temperatures at Faraday/Vernadsky station having increased at a rate of 0.56 °C decade,1 over the year and 1.09 °C decade,1 during the winter; both figures are statistically significant at less than the 5% level. Overlapping 30 year trends of annual mean temperatures indicate that, at all but two of the 10 coastal stations for which trends could be computed back to 1961, the warming trend was greater (or the cooling trend less) during the 1961,90 period compared with 1971,2000. All the continental stations for which MSLP data were available show negative trends in the annual mean pressures over the full length of their records, which we attribute to the trend in recent decades towards the Southern Hemisphere annular mode (SAM) being in its high-index state. Except for Halley, where the trends are constant, the MSLP trends for all stations on the Antarctic continent for 1971,2000 were more negative than for 1961,90. All but two of the coastal stations have recorded increasing mean wind speeds over recent decades, which is also consistent with the change in the nature of the SAM. Copyright © 2005 Royal Meteorological Society [source]


    Extreme precipitation over Southeastern Brazil in the austral summer and relations with the Southern Hemisphere annular mode

    ATMOSPHERIC SCIENCE LETTERS, Issue 1 2010
    Fernanda Cerqueira Vasconcellos
    Abstract Southeastern Brazil is a highly industrialized and populated region which largely contributes to the country's economy. Extreme precipitation over this region can cause floods and landslides occurrences or lack of precipitation that can affect many sectors of economy. The objective of this work is to identify atmospheric characteristics associated with austral summer extreme precipitation over part of Southeastern Brazil. The atmospheric characteristics obtained from wet and dry composites suggest that extreme precipitation was associated with anomalous circulation over the region, forced by a PSA-like wavetrain intensified by the Southern Annular Mode. Copyright © 2010 Royal Meteorological Society [source]


    A critical comparison of stratosphere,troposphere coupling indices

    THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 644 2009
    Mark P. Baldwin
    Abstract Assessing stratosphere,troposphere coupling in observational data or model output requires a multi-level index with high time resolution. Ideally, such an index would (1) represent spatial patterns in the troposphere that are most strongly coupled with stratospheric variability and (2) be robust and computationally feasible in both observations and standard model output. Several of the indices used to diagnose extratropical stratosphere,troposphere coupling are based on the Northern and Southern Hemisphere annular modes. The annular mode indices are commonly defined as the leading empirical orthogonal functions (EOFs) of monthly-mean, hemispheric geopotential height. In the lowermost troposphere, the structure of the annular modes is defined as the leading EOF of the near-surface geopotential height field, and these patterns correspond well to the patterns of variability induced by stratospheric circulation changes. At pressure levels above the surface, the structure of the annular modes is typically found by either calculating the local EOF or regressing geopotential height data onto the leading principal component time series of near-surface geopotential height. Here we make a critical comparison of the existing methodologies used to diagnose stratosphere,troposphere coupling, including EOF-based indices as well as measures based on zonal-mean wind at a fixed latitude and geopotential height over the polar cap. We argue in favour of an alternative methodology based on EOFs of daily zonally-averaged geopotential. We find that (1) the daily evolution of stratosphere,troposphere coupling events is seen most clearly with this methodology, and (2) the methodology is robust and requires few subjective choices, making it readily applicable to climate model output available only in zonal-mean form. Copyright © 2009 Royal Meteorological Society [source]


    North atlantic oscillatiodannular mode: Two paradigms,one phenomenon

    THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 564 2000
    John M. Wallace
    Abstract The North Atlantic Oscillation (NAO), as defined in the studies of Sir Gilbert Walker ca. 1930, and the zonal-index cycle, as elaborated by investigators at the Massachusetts Institute of Technology some twenty years later, are different interpretations of the same entity, whose time variations are well represented by the leading principal component of the northern hemisphere sea-level pressure field. The NAO paradigm envisions this phenomenon as involving a unique teleconnection pattern in the Atlantic sector that varies on interannual and longer time-scales in association with large-scale atmosphere-ocean interaction. In contrast, the zonal-index-cycle paradigm posits the existence of independent, fundamentally zonally symmetric (or ,annular') modes of variability in the northern and southern hemispheres, both of which fluctuate on intraseasonal as well as interannual time-scales. Spontaneous interactions between the zonally symmetric flow and the eddies are viewed as being largely responsible for the variability of the annular modes at the higher frequencies, and a variety of different mechanisms including, but by no means limited to, atmosphere-ocean interaction are viewed as potentially capable of forcing them at the lower frequencies. The NAO and ,annular mode' paradigms offer contradictory interpretations of the causal linkages that are responsible for the observed correlations between North Atlantic climate variability and variations in a diverse array of zonally averaged quantities. They suggest different research agendas and they evoke quite different images in the popular press. It is argued that the two paradigms cannot be equally valid and that it is in the interests of the community to come to a consensus as to which of them is more appropriate. Rules of evidence are proposed as a basis for making that decision. [source]