Annual Time Scales (annual + time_scale)

Distribution by Scientific Domains


Selected Abstracts


Modelling carbon balances of coastal arctic tundra under changing climate

GLOBAL CHANGE BIOLOGY, Issue 1 2003
Robert F. Grant
Abstract Rising air temperatures are believed to be hastening heterotrophic respiration (Rh) in arctic tundra ecosystems, which could lead to substantial losses of soil carbon (C). In order to improve confidence in predicting the likelihood of such loss, the comprehensive ecosystem model ecosys was first tested with carbon dioxide (CO2) fluxes measured over a tundra soil in a growth chamber under various temperatures and soil-water contents (,). The model was then tested with CO2 and energy fluxes measured over a coastal arctic tundra near Barrow, Alaska, under a range of weather conditions during 1998,1999. A rise in growth chamber temperature from 7 to 15 °C caused large, but commensurate, rises in respiration and CO2 fixation, and so no significant effect on net CO2 exchange was modelled or measured. An increase in growth chamber , from field capacity to saturation caused substantial reductions in respiration but not in CO2 fixation, and so an increase in net CO2 exchange was modelled and measured. Long daylengths over the coastal tundra at Barrow caused an almost continuous C sink to be modelled and measured during most of July (2,4 g C m,2 d,1), but shortening daylengths and declining air temperatures caused a C source to be modelled and measured by early September (,1 g C m,2 d,1). At an annual time scale, the coastal tundra was modelled to be a small C sink (4 g C m,2 y,1) during 1998 when average air temperatures were 4 °C above normal, and a larger C sink (16 g C m,2 y,1) during 1999 when air temperatures were close to long-term normals. During 100 years under rising atmospheric CO2 concentration (Ca), air temperature and precipitation driven by the IS92a emissions scenario, modelled Rh rose commensurately with net primary productivity (NPP) under both current and elevated rates of atmospheric nitrogen (N) deposition, so that changes in soil C remained small. However, methane (CH4) emissions were predicted to rise substantially in coastal tundra with IS92a-driven climate change (from ,20 to ,40 g C m,2 y,1), causing a substantial increase in the emission of CO2 equivalents. If the rate of temperature increase hypothesized in the IS92a emissions scenario had been raised by 50%, substantial losses of soil C (,1 kg C m,2) would have been modelled after 100 years, including additional emissions of CH4. [source]


A catchment scale evaluation of the SIBERIA and CAESAR landscape evolution models

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 8 2010
GR Hancock
Abstract Landscape evolution models provide a way to determine erosion rates and landscape stability over times scales from tens to thousands of years. The SIBERIA and CAESAR landscape evolution models both have the capability to simulate catchment,wide erosion and deposition over these time scales. They are both cellular, operate over a digital elevation model of the landscape, and represent fluvial and slope processes. However, they were initially developed to solve research questions at different time and space scales and subsequently the perspective, detail and process representation vary considerably between the models. Notably, CAESAR simulates individual events with a greater emphasis on fluvial processes whereas SIBERIA averages erosion rates across annual time scales. This paper describes how both models are applied to Tin Camp Creek, Northern Territory, Australia, where soil erosion rates have been closely monitored over the last 10 years. Results simulating 10,000 years of erosion are similar, yet also pick up subtle differences that indicate the relative strengths and weaknesses of the two models. The results from both the SIBERIA and CAESAR models compare well with independent field data determined for the site over different time scales. Representative hillslope cross-sections are very similar between the models. Geomorphologically there was little difference between the modelled catchments after 1000 years but significant differences were revealed at longer simulation times. Importantly, both models show that they are sensitive to input parameters and that hydrology and erosion parameter derivation has long-term implications for sediment transport prediction. Therefore selection of input parameters is critical. This study also provides a good example of how different models may be better suited to different applications or research questions. Copyright © 2010 John Wiley & Sons, Ltd and Commonwealth of Australia [source]


Decadal trend of climate in the Tibetan Plateau,regional temperature and precipitation

HYDROLOGICAL PROCESSES, Issue 16 2008
Z. X. Xu
Abstract The Tibetan Plateau has one of the most complex climates in the world. Analysis of the climate in this region is important for understanding the climate change worldwide. In this study, climate patterns and trends in the Tibetan Plateau were analysed for the period from 1961 to 2001. Air temperature and precipitation were analysed on monthly and annual time scales using data collected from the National Meteorological Centre, China Meteorological Administration. Nonlinear slopes were estimated and analysed to investigate the spatial and temporal trends of air temperature and precipitation in the Tibetan Plateau using a Mann,Kendall method. Spatial analysis of air temperature and precipitation variability across the Tibetan Plateau was undertaken. While most trends are local in nature, there are general basinwide patterns. Temperature during the last several decades showed a long-term warmer trend, especially the areas around Dingri and Zogong stations, which formed two increasing centres. Only one of the stations investigated exhibited decreasing trend, and this was not significant. Precipitation in the Tibetan Plateau has increased in most regions of the study area over the past several decades, especially in the eastern and central part, while the western Tibetan Region exhibited a decreased trend over the same period. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Uncertainties in central England temperature 1878,2003 and some improvements to the maximum and minimum series

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 9 2005
David Parker
Abstract We assess the random and systematic uncertainties affecting the central England temperature (CET) record since 1878 on daily, monthly and annual time scales. The largest contribution to uncertainty in CET on all these time scales arises from areal sampling, followed for annual and monthly CET by thermometer calibration. For the daily series, random thermometer precision and screen errors are the second largest source of uncertainty. Annual CETs are least uncertain, whereas daily CETs are most uncertain. Despite the uncertainties in annual mean CET, the trend of 0.077 °C per decade since 1900 is significant at the 1% level. In an additional investigation, we detect biases in the published series of central England maximum and minimum temperatures, and implement systematic adjustments of up to ±0.2 °C to the values up to 1921 and up to ±0.1 °C to the values since 1980. These adjustments are of opposite sign in maximum and minimum temperature, so they do not affect mean CET, but they improve the homogeneity of the diurnal temperature range, which then shows little trend before 1980 and a reduced rising trend thereafter. The uncertainties in maximum and minimum temperature make the data inadequate for the task of establishing the magnitude of the recent increase of diurnal range. © Crown Copyright 2005. Reproduced with the permission of Her Majesty's Stationery Office. Published by John Wiley & Sons, Ltd. [source]


Precipitation and atmospheric circulation patterns at mid-latitudes of Asia

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 5 2001
Elena M. Aizen
Abstract Analyses of the coupling between large-scale atmospheric patterns and modifications of regional precipitation regimes at seasonal and annual time scales in different terrain of mid-latitudes in Asia, including western Siberia, Tien Shan and Pamir mountains, and plains of middle Asia and Japanese Islands, were examined based on data from 57 and 88 hydro-climatic stations with 100 and 60 year records, respectively. For the past 100 years, a positive trend in precipitation was revealed in western Siberia, northern regions of Tien Shan and Japanese Islands. North Atlantic Oscillation (NAO) and West Pacific Oscillation (WPO) indices have inverse associations, with average amount of precipitation in western Siberia and in mountains and plains of middle Asia, and positive correlation in central and western regions of Japanese Islands. The Pacific North American (PNA) index is positively correlated with annual precipitation over most of the Japanese Islands. Northern Asian (NA) positive anomalies lead to decrease in winter precipitation in the western and eastern regions of Japanese Islands. We did not find significant impact of PNA or NA on precipitation in middle Asia. We suggest that during the last century, impacts of the western jet stream increased in the northern regions of Tien Shan and Japanese Islands, and weakened in the eastern Japanese Islands. There is a suggestion that conditions are more favourable for precipitation development over continental regions of Asia when the Siberian High is positioned further to the east than further to the west. During dominant development of a zonal atmospheric pattern, the annual and seasonal precipitation decreased over most regions in continental Asia and central Japan. Copyright © 2001 Royal Meteorological Society [source]