Home About us Contact | |||
Annua L. (annua + l)
Selected AbstractsResponse of Weed Communities to Legume Living Mulches in Winter WheatJOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 2 2007J. Hiltbrunner Abstract In order to obtain information about the impact of legume cover crops on the weed community in organic farming, winter wheat (Triticum aestivum L.) was directly drilled in rows 0.1875 and 0.3750 m apart in living mulches that consisted of Trifolium repens L. (TRFRE), T. subterraneum L. (TRFSU), Medicago truncatula Gaertner (MEDTR), and Lotus corniculatus L. (LOTCO). A control treatment without cover crops (NAT, the site-specific weed community) was also established. The vegetation between the wide rows was either mulched or left undisturbed. The effect of liquid farmyard manure (60 m3 ha,1) was also tested. TRFRE, TRFSU, and LOTCO effectively suppressed Poa annua L. and Matricaria recutita L. at site 1 and P. annua, Capsella bursa-pastoris (L.) Med., and Stellaria media (L.) Vill. at site 2 when compared with NAT. MEDTR, which died during the winter, provided little weed suppression. Mulching significantly suppressed dicotyledonous weed species, but favoured Poa trivialis L. No manure effect was observed. Winter hardy legume cover crops contribute to weed suppression in winter wheat. However, careful evaluation of cover crop × weed × management interactions is necessary to understand the risk for the establishment of problematic weeds. [source] Ecophysiological Response of Plants to Combined Pollution from Heavy-duty Vehicles and Industrial Emissions in Higher HumidityJOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 12 2006Hong-Xia Cui Abstract Pollution can be aggravated in industrial areas if traffic exhausts are mixed with industrial emissions under high humidity conditions. Plants growing in such environments may suffer from severe stress. The impact of vehicle emissions on urban vegetation in an industrial area in Qingdao, China, was investigated by studying seven plant species at visible, physiological and chemical levels. The traits of plant species in certain environmental conditions were compared between a clear area, Badaguan (BDG), and polluted area, Roadside (RS). We found that foliar sulfur uptake for all species was not significantly high at RS compared with BDG, although the sulfur content of atmosphere and surface soils at RS were much higher than those at BDG. For Ailanthus altissima Swingle, the content of foliar pigment and net photosynthesis rate (PN) decreased by 20%. Meanwhile, leaves became incrassate and no visible leaf damage was noted, suggesting this species could adapt well to pollution. A 50% decrease in PN occurred in Hibiscus syriacus L., but there was no statistical change in content of chlorophyll a and b and water uptake. Also, thickened leaves may prevent the pollutant from permeation. Foliar water content was still at a low level, although a water compensation mechanism was established for Fraxinus chinensis Rosb. reflected by low water potential and high water use efficiency. More adversely, a 65% decrease in PN happened inevitably with the significant decomposition of photosynthetic pigments, which exhibited visible damage. We also noted in one evergreen species (Magnolia grandiflora L.) that water absorption driven by low water potential should be helpful to supply water loss induced by strong stomatal transpiration and maintain normal growth. Furthermore, photosynthetic pigment content did not decline statistically, but supported a stable net assimilation. Two herbaceous species, Poa annua L. and Ophiopogon japonicus Ker-Gawl., were very tolerant to adverse stress compared to other woody species, especially in assimilation through a compensatory increase in leaf area. A more remarkable decline in PN (decrease 80%) was noted in the exotic but widespread species, Platanus orientalis L., with serious etiolation and withering being exhibited on the whole canopy. Our results suggested, special for woody species, that most native species are more tolerant to pollution and therefore should to be broadly used in a humid urban industrial environment with heavy-duty vehicle emissions. (Managing editor: Ya-Qin Han) [source] Antiulcerogenic activity of crude ethanol extract and some fractions obtained from aerial parts of Artemisia annua L.PHYTOTHERAPY RESEARCH, Issue 8 2001Patrícia Corrêa Dias Abstract The resulting enriched sesquiterpene lactone fraction and the crude ethanol extract of Artemisia annua L. aerial parts, showed antiulcerogenic activity when administered orally, on the indomethacin induced ulcer in rats. The sesquiterpene lactone fraction yielded three different polarity fractions on column chromatography as follows: non-polar, medium polarity and polar fraction, When submitted to the same indomethacin-induced ulcer in rats they resulted in different levels of inhibition of the ulcerative lesion index. The participation of nitric oxide was evaluated on an ethanol-induced ulcer model which had a previous administration of L -NAME, a NO-synthase inhibitor. Under these conditions, the medium polarity fraction maintained the antiulcerogenic activity, suggesting that nitric oxide could not be involved in the antiulcerogenic activity. When the animal groups were treated with N-ethylmaleimide, an alkylator of sulphhydryl groups, using the same experimental model, the medium polarity fraction maintained its antiulcerogenic activity, suggesting that the pharmacological mechanism is not related to non-protein sulphydryl compounds. On the ethanol-induced ulcer with previous indomethacin treatment, the medium polarity fraction lost its antiulcerogenic activity indicating that the active compounds of Artemisia annua L. increase the prostaglandin levels in the gastric mucosa. This hypothesis was reinforced by an increase of adherent mucus production by the gastric mucosa, produced by the medium polarity fraction on the hypothermic restraint stress induced ulcer model. Copyright © 2001 John Wiley & Sons, Ltd. [source] Effect of arbuscular mycorrhizal (AM) colonization on terpene emission and content of Artemisia annua L.PLANT BIOLOGY, Issue 1 2008F. Rapparini Abstract Plant roots interact with a wide variety of rhizospheric microorganisms, including bacteria and the symbiontic arbuscular mycorrhizal (AM) fungi. The mycorrhizal symbiosis represents a series of complex feedbacks between plant and fungus regulated by their physiology and nutrition. Despite the widespread distribution and ecological significance of AM symbiosis, little is known about the potential of AM fungi to affect plant VOC metabolism. The purpose of this study was to investigate whether colonization of plant roots by AM fungi and associated soil microorganisms affects VOC emission and content of Artemisia annua L. plants (Asteraceae). Two inoculum types were evaluated: one consisted of only an arbuscular mycorrhizal (AM) fungus species (Glomus spp.), and the other was a mixture of different Glomus species and associated soil bacteria. Inoculated plants were compared with non-inoculated plants and with plants supplemented with extra phosphorus (P) to obtain plants of the same size as mycorrhizal plants, thus excluding potentially-confounding mycorrhizal effects on shoot growth. VOC emissions of Artemisia annua plants were analyzed by leaf cuvette sampling followed by off-line measurements with pre-concentration and gas chromatography mass spectrometry (GC-MS). Measurements of CO2 and H2O exchanges were conducted simultaneously. Several volatile monoterpenes were identified and characterized from leaf emissions of Artemisia annua L. by GC-MS analysis. The main components identified belong to different monoterpene structures: ,-pinene, ,-pinene, camphor, 1,8-cineole, limonene, and artemisia ketone. A good correlation between monoterpene leaf concentration and leaf emission was found. Leaf extracts included also several sesquiterpenes. Total terpene content and emission was not affected by AM inoculation with or without bacteria, while emission of limonene and artemisia ketone was stimulated by this treatment. No differences were found among treatments for single monoterpene content, while accumulation of specific sesquiterpenes in leaves was altered in mycorrhizal plants compared to control plants. Growth conditions seemed to have mainly contributed to the outcome of the symbiosis and influenced the magnitude of the plant response. These results highlight the importance of considering the below-ground interaction between plant and soil for estimating VOC emission rates and their ecological role at multitrophic levels. [source] |