Home About us Contact | |||
Host Types (host + type)
Selected AbstractsForaging behaviour of Helicoverpa armigera first instar larvae on crop plants of different developmental stagesJOURNAL OF APPLIED ENTOMOLOGY, Issue 5 2005M.-L. Johnson Abstract:, Understanding how insect pests forage on their food plants can help optimize management strategies. Helicoverpa armigera (Hübner) (Lep., Noctuidae) is a major polyphagous pest of agricultural crops worldwide. The immature stages feed and forage on crops at all stages of plant development, damaging fruiting and non-fruiting structures, yet very little is known about the influence of host type or stage on the location and behaviour of larvae. Through semi-continuous observation, we evaluated the foraging (movement and feeding) behaviours of H. armigera first instar larvae as well as the proportion of time spent at key locations on mungbean [Vigna radiata (L.) Wilczek] and pigeon pea [Cajanus cajan (L.) Millspaugh] of differing developmental stages: seedling- and mature (flowering/pod fill)-stage plants. Both host type and age affected the behaviour of larvae. Larvae spent more time in the upper parts of mature plants than on seedlings and tended to stay at the top of mature plants if they moved there. This difference was greater in pigeon pea than in mungbean. The proportion of time allocated to feeding on different parts of a plant differed with host and age. More feeding occurred in the top of mature pigeon pea plants but did not differ between mature and seedling mungbean plants. The duration of key behaviours did not differ between plant ages in either crop type and was similar between hosts although resting bouts were substantially longer on mungbeans. Thus a polyphagous species such as H. armigera does not forage in equivalent ways on different hosts in the first instar stage. [source] Recent evolution of host-associated divergence in the seabird tick Ixodes uriaeMOLECULAR ECOLOGY, Issue 21 2009FLORENT KEMPF Abstract Ecological interactions are an important source of rapid evolutionary change and thus may generate a significant portion of novel biodiversity. Such changes may be particularly prevalent in parasites, where hosts can induce strong selection for adaptation. To understand the relative frequency at which host-associated divergences occur, it is essential to examine the evolutionary history of the divergence process, particularly when it is occurring over large geographical scales where both geographical and host-associated isolation may playa part. In this study, we use population genetics and phylogeography to study the evolutionary history of host-associated divergence in the seabird tick Ixodes uriae (Acari, Ixodidae). We compare results from microsatellite markers that reflect more ecological timescales with a conserved mitochondrial gene (COIII) that reflects more ancient divergence events. Population structure based on microsatellites showed clear evidence of host-associated divergence in all colonies examined. However, isolated populations of the same host type did not always group together in overall analyses and the genetic differentiation among sympatric host races was highly variable. In contrast, little host or geographical structure was found for the mitochondrial gene fragment. These results suggest that host race formation in I. uriae is a recent phenomenon, that it may have occurred several times and that local interactions are at different points in the divergence process. Rapid divergence in I. uriae implies a strong interaction with its local host species, an interaction that will alter the ecological dynamics of the system and modify the epidemiological landscape of circulating micropathogens. [source] SEQUENTIAL RAPID ADAPTATION OF INDIGENOUS PARASITOID WASPS TO THE INVASIVE BUTTERFLY PIERIS BRASSICAEEVOLUTION, Issue 8 2007Shingo Tanaka The introduction of a new species can change the characteristics of other species within a community. These changes may affect discontiguous trophic levels via adjacent trophic levels. The invasion of an exotic host species may provide the opportunity to observe the dynamics of changing interspecific interactions among parasitoids belonging to different trophic levels. The exotic large white butterfly Pieris brassicae invaded Hokkaido Island, Japan, and quickly spread throughout the island. Prior to the invasion, the small white butterfly P. rapae was the host of the primary parasitoid Cotesia glomerata, on which both the larval hyperparasitoid Baryscapus galactopus and the pupal hyperparasitoid Trichomalopsis apanteroctena depended. At the time of the invasion, C. glomerata generally laid eggs exclusively in P. rapae. During the five years following the invasion, however, the clutch size of C. glomerata in P. rapae gradually decreased, whereas the clutch size in P. brassicae increased. The field results corresponded well with laboratory experiments showing an increase in the rate of parasitism in P. brassicae. The host expansion of C. glomerata provided the two hyperparasitoids with an opportunity to choose between alternative hosts, that is, C. glomerata within P. brassicae and C. glomerata within P. rapae. Indeed, the pupal hyperparasitoid T. apanteroctena shifted its preference gradually to C. glomerata in P. brassicae, whereas the larval hyperparasitoid B. galactopus maintained a preference for C. glomerata in P. rapae. These changes in host preference may result from differential suitability of the two host types. The larval hyperparasitoid preferred C. glomerata within P. rapae to C. glomerata within P. brassicae, presumably because P. brassicae larvae attacked aggressively, thereby hindering the parasitization, whereas the pupal hyperparasitoid could take advantage of the competition-free resource by shifting its host preference. Consequently, the invasion of P. brassicae has changed the host use of the primary parasitoid C. glomerata and the pupal hyperparasitoid T. apanteroctena within a very short time. [source] Manipulation of oviposition choice of the parasitoid wasp, Encarsia pergandiella, by the endosymbiotic bacterium CardiniumJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 2 2007S. G. KENYON Abstract Reproductive manipulations of hosts by maternally inherited bacterial endosymbionts often result in an increase in the proportion of infected female hosts in the population. When this involves the conversion of incipient males to genetic or functional females, it presents unique difficulties for symbionts invading hosts with sex-specific reproductive behaviours, such as the autoparasitic Encarsia pergandiella. In sexual forms of this species, female eggs are laid in whitefly nymphs and male eggs are laid in conspecific or heterospecific parasitoids developing within the whitefly cuticle. Further, eggs laid in the ,wrong' host do not ordinarily complete development. This study explored the role of a bacterial symbiont, Cardinium, in manipulating oviposition behaviour in a thelytokous population of E. pergandiella. Oviposition choice was measured by the number and location of eggs deposited by both infected and uninfected adult waSPS in arenas containing equal numbers of hosts suitable for the development of male and female waSPS. Uninfected waSPS included antibiotic-treated female waSPS and (untreated) daughters of antibiotic-treated female waSPS. The choices of waSPS in the thelytokous population treatments were compared with those of a conspecific sexual population. We found that offspring of antibiotic-cured thelytokous waSPS reverted to the behaviour of unmated sexual waSPS, laying their few eggs almost exclusively in hosts appropriate for male eggs. Infected thelytokous waSPS distributed their eggs approximately evenly between host types, much like mated sexual female waSPS. The antibiotic-treated female waSPS exhibited choices intermediate to waSPS in the other two treatments. The change in the observed behaviour appears sufficient to allow invasion and persistence of Cardinium in sexual populations. Lastly, our results suggest a reduction in host discrimination as a possible mechanism by which Cardinium influences this change. [source] Temptations of weevil: feeding and ovipositional behaviour of Hylobius warreni Wood on host and nonhost bark in laboratory bioassaysAGRICULTURAL AND FOREST ENTOMOLOGY, Issue 4 2009Gareth R. Hopkins Abstract 1Warren root collar weevil Hylobius warreni Wood (Coleoptera: Curculionidae) is a long-lived, flightless insect native to coniferous forests across northern North America. Girdling by larval feeding causes significant mortality on young trees. The insect poses considerable challenges to reforestation. 2Adult weevils feed on all life stages of a variety of coniferous hosts prior to oviposition. Their relative feeding preferences, however, have not been quantified. Moreover, it is not known whether host bark influences oviposition behaviour. 3Feeding preferences of adult weevils were tested in both choice and no-choice laboratory bioassays using small branches from three conifers (lodgepole pine Pinus contorta var. latifolia, interior hybrid spruce Picea glauca×engelmannii, and Douglas-fir Pseudotsuga menziesii) and one deciduous tree (trembling aspen Populus tremuloides). Measurements included the surface area of bark consumed, rate of consumption, the number of days of feeding, and, in the no-choice assay, the number of eggs oviposited. 4Bark consumption was greatest on pine and Douglas-fir, followed by spruce. Little to no feeding occurred on aspen. Consumption did not vary between male versus female insects for any of the feeding metrics quantified. 5The presence of aspen branches did not inhibit feeding on any of the other species in the choice bioassays. 6The number of eggs laid by female insects did not differ significantly among tree species in the no-choice assay. Eggs were laid indiscriminately in the presence of all four host types. 7Results and opportunities for future research are discussed in the context of formulating new integrated pest management strategies for this insect, which is increasingly important in the period of reforestation subsequent to the mountain pine beetle epidemic in western Canada. [source] Reproduction now or later: optimal host-handling strategies in the whitefly parasitoid Encarsia formosaOIKOS, Issue 1 2004Joep M. S. Burger We developed a dynamic state variable model for studying optimal host-handling strategies in the whitefly parasitoid Encarsia formosa Gahan (Hymenoptera: Aphelinidae). We assumed that (a) the function of host feeding is to gain nutrients that can be matured into eggs, (b) oögenesis is continuous and egg load dependent, (c) parasitoid survival is exponentially distributed and (d) parasitoids encounter hosts randomly, are autogenous and have unlimited access to non-host food sources to obtain energy for maintenance and activity. The most important prediction of the model is that host feeding is maladaptive under field conditions of low host density (0.015 cm,2) and short parasitoid life expectancy (maximum reproductive period of 7 d). Nutrients from the immature stage that can be matured into eggs are sufficient to prevent egg limitation. Both host density and parasitoid life expectancy have a positive effect on the optimal host-feeding ratio. Parasitoids that make random decisions gain on average only 35% (0.015 hosts cm,2) to 60% (1.5 hosts cm,2) of the lifetime reproductive success of parasitoids that make optimal decisions, independent of their life expectancy. Parameters that have a large impact on lifetime reproductive success and therefore drive natural selection are parasitoid life expectancy and the survival probability of deposited eggs (independent of host density), the number of host encounters per day (when host density is low) and the egg maturation rate and number of host types (when host density is high). Explaining the evolution of host-feeding behaviour under field conditions requires field data showing that life expectancy in the field is not as short as we assumed, or may require incorporation of variation in host density. Incorporating variation in walking speed, parasitised host types or egg resorption is not expected to provide an explanation for the evolution of host-feeding behaviour under field conditions. [source] A case of mistaken identity?MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2007GRB 060912A, short GRB divide, the nature of the long ABSTRACT We investigate the origin of the GRB 060912A, which has observational properties that make its classification as either a long or short burst ambiguous. Short-duration gamma-ray bursts (SGRBs) are thought to have typically lower energies than long-duration bursts, can be found in galaxies with populations of all ages and are likely to originate from different progenitors to the long-duration bursts. However, it has become clear that duration alone is insufficient to make a distinction between the two populations in many cases, leading to a desire to find additional discriminators of burst type. GRB 060912A had a duration of 6 s and occurred only ,10 arcsec from a bright, low-redshift (z= 0.0936) elliptical galaxy, suggesting that this may have been the host, which would favour it being a short burst. However, our deep optical imaging and spectroscopy of the location of GRB 060912A using the Very Large Telescope (VLT) shows that GRB 060912A more likely originates in a distant star-forming galaxy at z= 0.937, and is most likely a long burst. This demonstrates the risk in identifying bright, nearby galaxies as the hosts of given gamma-ray bursts (GRBs) without further supporting evidence. Further, it implies that, in the absence of secure identifications, ,host' type, or more broadly discriminators that rely on galaxy redshifts, may not be good indicators of the true nature of any given GRB. [source] |