Host Structure (host + structure)

Distribution by Scientific Domains


Selected Abstracts


Silica-Based, Organically Modified Host Material for Waveguide Structuring by Two-Photon-Induced Photopolymerization

ADVANCED FUNCTIONAL MATERIALS, Issue 5 2010
Stefan Krivec
Abstract The three-dimensional fabrication of optical waveguides has gained increasing interest in recent years to establish interconnections between electrical components on a very small scale where copper circuits encounter severe limitations. In this work the application of optically clear, organically modified porous silica monoliths and thin films as a host material for polymeric waveguides to be inscribed into the solid host structure by two-photon-induced photopolymerization is investigated. Porosity is generated using a lyotropic liquid crystalline surfactant/solvent system as a template for the solid silica material obtained by a sol,gel transition of a liquid precursor. In order to reduce the brittleness of the purely inorganic material, organic,inorganic co-precursor molecules that contain poly(ethylene glycol) chains are synthesized and added to the mixture, which successfully suppresses macroscopic cracking and leads to flexible thin films. The structure of the thus-obtained porous organic,inorganic hybrid material is investigated by atomic force microscopy. It is shown that the modified material is suitable for infiltration with photocurable monomers and functional polymeric waveguides can be inscribed by selective two-photon-induced photopolymerization. [source]


Vibration and stability control of robotic manipulator systems consisting of a thin-walled beam and a spinning tip rotor

JOURNAL OF FIELD ROBOTICS (FORMERLY JOURNAL OF ROBOTIC SYSTEMS), Issue 10 2002
Ohseop Song
Vibration and stability feedback control of a robotic manipulator modeled as a cantilevered thin-walled beam carrying a spinning rotor at its tip is investigated. The control is achieved via incorporation of adaptive capabilities that are provided by a system of piezoactuators, bonded or embedded into the host structure. Based on converse piezoelectric effect, the piezoactuators produce a localized strain field in response to an applied voltage, and as a result, an adaptive change of vibrational and stability response characteristics is obtained. A feedback control law relating the piezoelectrically induced bending moments at the beam tip with the appropriately selected kinematical response quantities is used, and the beneficial effects of this control methodology upon the closed-loop eigenvibration characteristics and stability boundaries are highlighted. The cantilevered structure modeled as a thin-walled beam, and built from a composite material, encompasses non-classical features, such as anisotropy, transverse shear, and secondary warping, and in this context, a special ply-angle configuration inducing a structural coupling between flapping-lagging and transverse shear is implemented. It is also shown that the directionality property of the material of the host structure used in conjunction with piezoelectric strain actuation capability, yields a dramatic enhancement of both the vibrational and stability behavior of the considered structural system. © 2002 Wiley Periodicals, Inc. [source]


Eu3Si15,,,xAl1,+,xOxN23,,,x (x, 5/3) as a commensurate composite crystal

ACTA CRYSTALLOGRAPHICA SECTION B, Issue 5 2009
Yuichi Michiue
A new Eu-SiAlON crystal, Eu3Si15,,,xAl1,+,xOxN23,,,x (x, 5/3), was found and the structure was determined by an X-ray diffraction technique using a twinned sample. The structure consists of a host framework, which is constructed by the connection of MX4 tetrahedra (M: Si or Al; X: O or N), and Eu ions as the guest ions. The structure is considered to be a commensurate composite crystal. The basic vectors are a1 = a/3, b and c for the first substructure, and a2 = a/5, b and c for the second substructure. The first substructure consists of part of the host framework and the Eu ions, while the remainder of the host structure is taken as the second substructure. Possible phases belonging to the series are proposed using the composite crystal model in (3,+,1)-dimensional superspace. Chemical composition, possible space groups, cell parameters, and the basic model for those phases are presented. [source]


Mimicry in plant-parasitic fungi

FEMS MICROBIOLOGY LETTERS, Issue 2 2006
Henry K. Ngugi
Abstract Mimicry is the close resemblance of one living organism (the mimic) to another (the model), leading to misidentification by a third organism (the operator). Similar to other organism groups, certain species of plant-parasitic fungi are known to engage in mimetic relationships, thereby increasing their fitness. In some cases, fungal infection can lead to the formation of flower mimics (pseudoflowers) that attract insect pollinators via visual and/or olfactory cues; these insects then either transmit fungal gametes to accomplish outcrossing (e.g. in some heterothallic rust fungi belonging to the genera Puccinia and Uromyces) or vector infectious spores to healthy plants, thereby spreading disease (e.g. in the anther smut fungus Microbotryum violaceum and the mummy berry pathogen Monilinia vaccinii-corymbosi). In what is termed aggressive mimicry, some specialized plant-parasitic fungi are able to mimic host structures or host molecules to gain access to resources. An example is M. vaccinii-corymbosi, whose conidia and germ tubes, respectively, mimic host pollen grains and pollen tubes anatomically and physiologically, allowing the pathogen to gain entry into the host's ovary via stigma and style. We review these and other examples of mimicry by plant-parasitic fungi and some of the mechanisms, signals, and evolutionary implications. [source]


Synthesis and NMR solution structure of an ,-helical hairpin stapled with two disulfide bridges

PROTEIN SCIENCE, Issue 5 2000
Philippe Barthe
Abstract Helical coiled-coils and bundles are some of the most common structural motifs found in proteins. Design and synthesis of ,-helical motifs may provide interesting scaffolds that can be useful as host structures to display functional sites, thus allowing the engineering of novel functional miniproteins. We have synthesized a 38-amino acid peptide, ,2p8, encompassing the ,-helical hairpin present in the structure of p8MTCP1, as an ,-helical scaffold particularly promising for its stability and permissiveness of sequence mutations. The three-dimensional structure of this peptide has been solved using homonuclear two-dimensional NMR techniques at 600 MHz. After sequence specific assignment, a total of 285 distance and 29 dihedral restraints were collected. The solution structure of ,2p8 is presented as a set of 30 DIANA structures, further refined by restrained molecular dynamics, using simulated annealing protocol with the AMBER force field. The RMSD values for the backbone and all heavy atoms are 0.65 ± 0.25 and 1.51 ± 0.21 Å, respectively. Excised from its protein context, the ,-hairpin keeps its native structure: an ,-helical coiled-coil, similar to that found in superhelical structures, with two helices spanning residues 4-16 and 25,36, and linked by a short loop. This motif is stabilized by two interhelical disulfide bridges and several hydrophobic interactions at the helix interface, leaving most of its solvent-exposed surface available for mutation. This ,-helical hairpin, easily amenable to synthetic chemistry and biological expression system, may represent a stable and versatile scaffold to display new functional sites and peptide libraries. [source]