Host Rock (host + rock)

Distribution by Scientific Domains
Distribution within Earth and Environmental Science


Selected Abstracts


Origin of Paleofluids in Dabashan Foreland Thrust Belt: Geochemical Evidence of 13C, 18O and 87Sr/86Sr in Veins and Host Rocks

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 5 2010
ZENG Jianhui
Abstract: In the last ten years, with important discoveries from oil and gas exploration in the Dabashan foreland depression belt in the borderland between Shanxi and Sichuan provinces, the relationship between the formation and evolution of, and hydrocarbon accumulation in, this foreland thrust belt from the viewpoint of basin and oil and gas exploration has been studied. At the same time, there has been little research on the origin of fluids within the belt. Based on geochemical system analysis including Z values denoting salinity and research on ,13C, ,18O and 87Sr/86Sr isotopes in the host rocks and veins, the origin of paleofluids in the foreland thrust belt is considered. There are four principal kinds of paleofluid, including deep mantle-derived, sedimentary, mixed and meteoric. For the deep mantle-derived fluid, the ,13C is generally less than ,5.0,PDB, ,18O less than ,10.0,PDB, Z value less than 110 and 87Sr/86Sr less than 0.70600; the sedimentary fluid is mainly marine carbonate-derived, with the ,13C generally more than ,2.0,PDB, ,18O less than ,10.0,PDB, Z value more than 120 and 87Sr/86Sr ranging from 0.70800 to 0.71000; the mixed fluid consists mainly of marine carbonate fluid (including possibly a little mantle-derived fluid or meteoric water), with the ,13C generally ranging from ,2.0, to ,8.0,PDB, ,18O from ,10.0, to ,18.0, PDB, Z value from 105 to 120 and 87Sr/86Sr from 0.70800 to 0.71000; the atmospheric fluid consists mainly of meteoric water, with the ,13C generally ranging from 0.0, to ,10.0,PDB, ,18O less than ,8.0%cPDB, Z value less than 110 and 87Sr/86Sr more than 0.71000. The Chengkou fault belt encompasses the most complex origins, including all four types of paleofluid; the Zhenba and Pingba fault belts and stable areas contain a simple paleofluid mainly of sedimentary type; the Jimingsi fault belt contains mainly sedimentary and mixed fluids, both consisting of sedimentary fluid and meteoric water. Jurassic rocks of the foreland depression belt contain mainly meteoric fluid. [source]


Strontium isotopic characterization of the Palmottu hydrosystem (Finland): water,rock interaction and geochemistry of groundwaters

GEOFLUIDS (ELECTRONIC), Issue 3 2003
Philippe Negrel
Abstract The Palmottu hydrosystem is located in a granitic host rock in southern Finland. Along well-defined pathways in the fractured crystalline rock, strontium isotopes are used to trace the degree of water,rock interaction (WRI) and mixing processes in groundwaters. The 87Sr/86Sr ratios range between 0.716910 and 0.735606 in the surface waters and between 0.719991 and 0.750787 in the groundwaters, but are between 0.720 and 0.735 in most of the samples. Moreover, the results show a lack of correlation between the water chemistries determining the classification into different water-types (Na,Cl, Na,SO4, etc.) and the results of the strontium (Sr) contents and Sr isotopic ratios. From a WRI standpoint, this implies that the Sr behaviour is independent of the water chemistry; the occurrence of large 87Sr/86Sr variations is site specific and mainly dependent on the lithology. A model to determine the 87Sr/86Sr ratio of water after interaction with granite was developed. This model is based on the assumption that Sr was derived from three minerals: plagioclase, K-feldspar and biotite. The results of the calculation indicate that around half of the water analysed within the Palmottu hydrosystem can be explained by the weathering of the granites. However, clearly lower 87Sr/86Sr are observed in waters when compared to the calculated 87Sr/86Sr and other sources of Sr, with low 87Sr/86Sr, rather than the calculated granite,water interaction, which may be suspected. When comparing the 87Sr/86Sr and ion ratios (Ca/Na, Mg/Na, Sr/Na, Cl/Na), the scattering of the data can be explained by the presence of four end-members: a brine component (low 87Sr/86Sr and Ca/Na ratios,), a deep granitic component (high 87Sr/86Sr ratios and low Ca/Na ratios,), a subsurface component (intermediate 87Sr/86Sr ratios associated with high Ca/Na ratios,) and a surface end-member:snow and river drainage (low 87Sr/86Sr and low Ca/Na ratios,). These extreme end-members define a series of WRI-mixing line within a rather complex hydrosystem. [source]


New insights from reactive transport modelling: the formation of the sericitic vein envelopes during early hydrothermal alteration at Butte, Montana

GEOFLUIDS (ELECTRONIC), Issue 3 2002
S. Geiger
Abstract A reactive transport computer code has been employed to model hydrothermal alteration of a granitoid rock bordering a discrete vein channel. The model suggests that the grey sericitic and sericitic with remnant biotite alteration envelopes at the porphyry copper deposit at Butte, Montana, can be formed by a reducing, low pH, and low salinity fluid under constant temperature and pressure conditions of approximately 400 °C and less than 100 MPa during a time span of approximately 100 years or less. Hydrothermal alteration has little effect on the porosity of the host rock (Butte Quartz Monzonite), and the diffusivity of the aqueous species also changes little. A sequence of mineral reaction fronts characterizes the alteration envelopes. The biotite dissolution front occurs closest to the vein channel and marks the transition from the grey sericitic to sericitic with remnant biotite envelope. The plagioclase dissolution front occurs farthest into the matrix and marks the edge of relatively fresh Butte Quartz Monzonite. From the properties of the quasi-stationary state approximation (Lichtner 1988; Lichtner 1991), it follows that once the sequence of reaction fronts is fully established, their relative locations remain constant and the widths of the reaction zones increase with the square root of time. [source]


Die Detektionseffizienz von Vorausbohrungen im Tunnelbau

GEOMECHANICS AND TUNNELLING, Issue 5 2008
Hans-Jakob Ziegler Dr. phil.nat.
Vor allem im Zusammenhang mit den großen Tunnelprojekten werden Vorausbohrungen zur Erkundung des Gebirges systematisch durchgeführt. Wie die Erfahrungen vom Lötschberg- und Gotthard-Basistunnel zeigen, handelt es sich dabei um ein effizientes Hilfsmittel, um "unerwünschte Ereignisse" wie Schlamm- und Wassereinbrüche oder das Anfahren von unerwarteten Störungszonen zu vermeiden. Nur in drei Fällen traten solche "unerwünschten Ereignisse" bisher auf der betrachteten, ausgebrochenen Tunnelstrecke von insgesamt etwa 100 km auf. Dies zeigt klar den großen Nutzen von Vorausbohrungen für die Arbeits- und Planungssicherheit im modernen Tunnelbau. Die vorgestellten Beispiele belegen aber auch, dass auch mit den effizientesten Vorausbohrungen die Eintretenswahrscheinlichkeit von "unerwünschten Ereignissen" nie Null sein wird. The detection efficacy of reconnaissance drilling in tunnelling Mainly in connection with major tunnel projects, reconnaissance drilling is systematically used to survey the host rock. As shows the experience from the Lötschberg- and the Gotthard basetunnels, reconnaissance drilling is an efficient tool in avoiding "unwanted hazards" like mud or water intrusions, or the penetration of unexpected fracture or failure zones. On the observed excavated tunnel distance of about 100 km, up to now, such "unwanted hazards" occurred tree times only. This clearly demonstrates the important benefit of reconnaissance drilling for work and planning security in modern tunnelling. However, the examples presented also make obvious, that even with the most efficient reconnaissance drilling the probability of an "unwanted hazard" will never become zero. [source]


Traveltime approximation for a reflected wave in a homogeneous anisotropic elastic layer

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2002
M. Zillmer
Summary An approximation to the traveltime field is calculated for an elastic wave that propagates in a homogeneous anisotropic layer and is reflected at a plane boundary. The traveltime is approximated by a Taylor series expansion with the third derivative of the traveltime being taken into account. The coefficients of the series refer to the seismic ray, which is locally the fastest ray. Simple formulae are obtained for orthorhombic media in the crystal coordinate system, which relate the traveltimes of the reflected waves to the elastic constants of the medium. A numerical example is presented for wave propagation in orthorhombic olivine, which is a constituent of the Earth's mantle. A second example is given by an isotropic host rock with a set of parallel cracks, which is an important model for wave propagation in the Earth's crust. The elastic parameters can be determined by measuring the reflection times as a function of source,receiver offset. The approximate traveltime,distance curves are compared with traveltimes obtained from seismic ray tracing. [source]


Seismic characterization of vertical fractures described as general linear-slip interfaces

GEOPHYSICAL PROSPECTING, Issue 2 2003
Vladimir Grechka
ABSTRACT Fluid flow in many hydrocarbon reservoirs is controlled by aligned fractures which make the medium anisotropic on the scale of seismic wavelength. Applying the linear-slip theory, we investigate seismic signatures of the effective medium produced by a single set of ,general' vertical fractures embedded in a purely isotropic host rock. The generality of our fracture model means the allowance for coupling between the normal (to the fracture plane) stress and the tangential jump in displacement (and vice versa). Despite its low (triclinic) symmetry, the medium is described by just nine independent effective parameters and possesses several distinct features which help to identify the physical model and estimate the fracture compliances and background velocities. For example, the polarization vector of the vertically propagating fast shear wave S1 and the semi-major axis of the S1 -wave normal-moveout (NMO) ellipse from a horizontal reflector always point in the direction of the fracture strike. Moreover, for the S1 -wave both the vertical velocity and the NMO velocity along the fractures are equal to the shear-wave velocity in the host rock. Analysis of seismic signatures in the limit of small fracture weaknesses allows us to select the input data needed for unambiguous fracture characterization. The fracture and background parameters can be estimated using the NMO ellipses from horizontal reflectors and vertical velocities of P-waves and two split S-waves, combined with a portion of the P-wave slowness surface reconstructed from multi-azimuth walkaway vertical seismic profiling (VSP) data. The stability of the parameter-estimation procedure is verified by performing non-linear inversion based on the exact equations. [source]


Strontium Isotopic Identification of Water-Rock Interaction and Ground Water Mixing

GROUND WATER, Issue 3 2004
Carol D. Frost
87Sr/86Sr ratios of ground waters in the Bighorn and Laramie basins' carbonate and carbonate-cemented aquifer systems, Wyoming, United States, reflect the distinctive strontium isotope signatures of the minerals in their respective aquifers. Well water samples from the Madison Aquifer (Bighorn Basin) have strontium isotopic ratios that match their carbonate host rocks. Casper Aquifer ground waters (Laramie Basin) have strontium isotopic ratios that differ from the bulk host rock; however, stepwise leaching of Casper Sandstone indicates that most of the strontium in Casper Aquifer ground waters is acquired from preferential dissolution of carbonate cement. Strontium isotope data from both Bighorn and Laramie basins, along with dye tracing experiments in the Bighorn Basin and tritium data from the Laramie Basin, suggest that waters in carbonate or carbonate-cemented aquifers acquire their strontium isotope composition very quickly,on the order of decades. Strontium isotopes were also used successfully to verify previously identified mixed Redbeds-Casper ground waters in the Laramie Basin. The strontium isotopic compositions of ground waters near Precambrian outcrops also suggest previously unrecognized mixing between Casper and Precambrian aquifers. These results demonstrate the utility of strontium isotopic ratio data in identifying ground water sources and aquifer interactions. [source]


Zeolites in fissures of granites and gneisses of the Central Alps

JOURNAL OF METAMORPHIC GEOLOGY, Issue 8 2010
T. WEISENBERGER
Abstract Six different Ca-zeolite minerals are widespread in various assemblages in late fissures and fractures in granites and gneisses of the Swiss Alps. The zeolites formed as a result of water,rock interaction at relatively low temperatures (<250 °C) in the continental upper crust. The zeolites typically overgrow earlier minerals of the fissure assemblages, but zeolites also occur as monomineralic fissure fillings. They represent the youngest fissure minerals formed during uplift and exhumation of the Alpine orogen. A systematic study of zeolite samples showed that the majority of finds originate from three regions particularity rich in zeolite-bearing fissures: (i) in the central and eastern part of the Aar- and Gotthard Massifs; (2) Gibelsbach/Fiesch, in a fissure breccia located at the boundary of Aar Massif and Permian sedimentary rocks; and (3) in Penninic gneisses of the Simano nappe at Arvigo (Val Calanca). Rail and road tunnel construction across the Aar- and Gotthard Massif provided excellent data on zeolite frequency in Alpine fissures. It was found that 32% (Gotthard NEAT rail base tunnel, Amsteg section) and 18% (Gotthard road tunnel) of all studied fissures are filled with zeolites. The number of different zeolites is limited to six species: laumontite, stilbite and scolecite are abundant and common, whereas heulandite, chabazite and epistilbite occur occasionally. Calcium is the dominant extra-framework cation, with minor K and Na. Heulandite and chabazite contain Sr up to 29 and 10 mol.% extra-framework cations respectively. Na and K contents in zeolites tend to increase during growth as a result of changes in fluid composition and/or temperature. The K enrichment of stilbite found in surface outcrops compared to subsurface samples may indicate late stage cation exchange with surface water. Texture data, relative age sequences derived from fissure assemblages and equilibrium calculations show that the Ca-dominated zeolites precipitated from fluid with decreasing temperature in the order (old to young = hot to cold): scolecite, laumontite, heulandite, chabazite and stilbite. The necessary components for zeolite formation are derived from dissolving primary granite and gneiss minerals. The nature of these minerals depends, among other factors, on the metamorphic history of the host rock. Zeolites in the Aar Massif derived from the dissolution of epidote, secondary calcite and albite that were originally formed during Alpine greenschist metamorphism from primary granite and gneiss assemblages. Zeolite fissures occur in areas of H2O-dominated fluids. This is consistent with equilibrium calculations that predict a low CO2 tolerance of zeolite assemblages, particularly at low temperature. [source]


Origin of migmatites by deformation-enhanced melt infiltration of orthogneiss: a new model based on quantitative microstructural analysis

JOURNAL OF METAMORPHIC GEOLOGY, Issue 1 2008
P. HASALOVÁ
Abstract A detailed field study reveals a gradual transition from high-grade solid-state banded orthogneiss via stromatic migmatite and schlieren migmatite to irregular, foliation-parallel bodies of nebulitic migmatite within the eastern part of the Gföhl Unit (Moldanubian domain, Bohemian Massif). The orthogneiss to nebulitic migmatite sequence is characterized by progressive destruction of well-equilibrated banded microstructure by crystallization of new interstitial phases (Kfs, Pl and Qtz) along feldspar boundaries and by resorption of relict feldspar and biotite. The grain size of all felsic phases decreases continuously, whereas the population density of new phases increases. The new phases preferentially nucleate along high-energy like,like boundaries causing the development of a regular distribution of individual phases. This evolutionary trend is accompanied by a decrease in grain shape preferred orientation of all felsic phases. To explain these data, a new petrogenetic model is proposed for the origin of felsic migmatites by melt infiltration from an external source into banded orthogneiss during deformation. In this model, infiltrating melt passes pervasively along grain boundaries through the whole-rock volume and changes completely its macro- and microscopic appearance. It is suggested that the individual migmatite types represent different degrees of equilibration between the host rock and migrating melt during exhumation. The melt topology mimicked by feldspar in banded orthogneiss forms elongate pockets oriented at a high angle to the compositional banding, indicating that the melt distribution was controlled by the deformation of the solid framework. The microstructure exhibits features compatible with a combination of dislocation creep and grain boundary sliding deformation mechanisms. The migmatite microstructures developed by granular flow accompanied by melt-enhanced diffusion and/or melt flow. However, an AMS study and quartz microfabrics suggest that the amount of melt present did not exceed a critical threshold during the deformation to allow free movements of grains. [source]


Reclassification and thermal history of Trenzano chondrite

METEORITICS & PLANETARY SCIENCE, Issue 12 2007
A. M. FIORETTI
The quenched intracrystalline Fe2+ -Mg ordering state in orthopyroxene preserves the memory of the cooling rate near closure temperature Tc, thus yielding useful constraints on the last thermal event undergone by the host rock. The orthopyroxene Tc of 522 ± 13 °C, calculated using a new calibration equation obtained by Stimpfl (2005b), is higher than in previously published H chondrite data. The orthopyroxene cooling rate at this Tc is about 100 °C/kyr. This fast rate is inconsistent with the much slower cooling rate expected for H6 in the onion shell structural and thermal model of chondrite parent bodies. A petrographic study carried out at the same time indicated that the Trenzano meteorite is an H5 chondrite and not an H6 chondrite, as it is officially classified. Furthermore, the two-pyroxene equilibrium temperature of Trenzano (824 ± 24 °C), calculated with QUILF95, is similar to the two-pyroxene temperature of 750,840 °C obtained for the Carcote (H5) chondrite (Kleinschrot and Okrusch 1999). [source]


Magmatic evolution of the Mantos Blancos copper deposit, Coastal Range of northern Chile: insight from Sr,Nd isotope, geochemical data and silicate melt inclusions

RESOURCE GEOLOGY, Issue 2 2008
Luis E. Ramírez
Abstract The Mantos Blancos copper deposit (500 Mt at 1.0% Cu) was affected by two superimposed hydrothermal events: (i) phyllic alteration related to a rhyolitic dome emplacement and brecciation at ca 155 Ma; and (ii) potassic, sodic and propylitic alteration at ca 142 Ma, coeval with stocks and sills emplacement of dioritic and granodioritic porphyries, that locally grade upwards into polymictic magmatic hydrothermal breccias. Major hypogene copper sulfide mineralization is related to the second event. A late-ore mafic dike swarm cross-cuts all rocks in the deposit. Two types of granodioritic porphyries can be distinguished from petrographic observations and geochemical data: granodiorite porphyry I (GP I) and granodiorite porphyry II (GP II), which resulted from two different trends of magmatic evolution. The concave shape of the rare earth element (REE) distribution pattern together with the weak or absence of negative Eu anomalies in mafic dikes, dioritic and GP I porphyries, suggest hornblende-dominated fractionation for this magmatic suite. In contrast, distinct negative Eu anomalies and the flat REE patterns suggest plagioclase-dominated fractionation, at low oxygen fugacity, for the GP II porphyry suite. But shallow mixing and mingling between silicic and dioritic melts are also likely for the formation of the GP II and polymictic breccias, respectively. Sr-Nd isotopic compositions suggest that the rhyolitic dome rocks were generated from a dominantly crustal source, while the GP I has mantle affinity. The composition of melt inclusions (MI) in quartz crystals from the rhyolitic dome is similar to the bulk composition of their host rock. The MI analyzed in quartz from GP II and in the polymictic magmatic hydrothermal breccia of the deposit are compositionally more evolved than their host rocks. Field, geochemical and petrographic data provided here point to dioritic and siliceous melt interaction as an inducing mechanism for the release of hydrothermal fluids to form the Cu mineralization. [source]


K-Ar Ages of Tin-Polymetallic Mineralization in the Oruro Mining District, Central Bolivian Tin Belt

RESOURCE GEOLOGY, Issue 4 2003
Asahiko Sugaki
Abstract. K-Ar age determinations were carried out on vein- and rock-forming minerals from five vein-type tin-polymetallic ore deposits of the Oruro mining district in the central part of the Bolivian tin belt. The sericite from vein selvedges and an altered host rock provides good estimates of the ages of hypogene mineralization, and supergene alunite and jarosite provide ages for erosional and weathering episodes. It is concluded that hypogene mineralization in the Oruro mining district took place during the early to middle Miocene: 15.8±0.8 Ma at San José, 20.1±l.l Ma at Morococala, 20.5±1.0 Ma at Avicaya, and 19.6±1.0 Ma at Llallagua. Fine grained supergene alunite (,34S = -10.1 960) and jarosite yield K-Ar ages of 6.7±0.7 Ma at Avicaya and 3.9±0.7 Ma at Bolivar, respectively, suggesting that erosion and chemical weathering were active at those times. [source]


U-Pb SHRIMP Dating of Zircon from Quartz Veins of the Yangshan Gold Deposit in Gansu Province and Its Geological Significance

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 2 2004
QI Jinzhong
Abstract, The Yangshan gold deposit is a super-large fine-grained disseminated gold deposit located in southern Gansu Province. Its metallogenic age has been determined by using the cathodoluminescence image and ion probe U-Pb dating techniques. It is found that zircons from quartz veinlet of the fine-grained disseminated gold ore show characters of magmatic origin with prism idiomorphism, oscillatory zoning and dominant Th/U ratios of 0.5,1.5. Three main populations of zircons are obtained, giving average 206Pb/238U ages of 197.6±1.7 Ma, 126.9±3.2 Ma and 51.2±1.3 Ma respectively. The first age corresponds to the K-Ar age of the plagiogranite dike, while the latter two ages indicate that buried Cretaceous and Tertiary intrusives exist in the orefield, suggesting that the Yangshan gold deposit was genetically related to the three magmatic hydrothermal activities. By contrast, zircons from coarse gold-bearing quartz vein in the mining area are much older than the host rock, indicating that the vein was formed earlier and was not contaminated by later magmatic fluids. It is concluded that the coupling of multiperiodic hydrothermal activities in the mining area has contributed a lot to mineralization of the Yangshan gold deposit. [source]


An experimental and modeling study of Na-rich hydrothermal alteration

GEOFLUIDS (ELECTRONIC), Issue 4 2005
J. HARA
Abstract Sodic alteration assemblages including clinoptilolite, mordenite, analcime and Na-montmorillonite were locally observed in sediments in the eastern part of the Hachimantai geothermal region, northeast Japan. This study investigated the mechanisms of sodic enrichment in the sediments during alteration. Kinetic results for water/rock interaction experiments are reported here. Batch-type experiments were conducted at 150,250°C under saturated vapor pressure. Pyroclastic rocks dissolved incongruently in these experiments, and the solubility and dissolution rates among elements varied as follows: the apparent steady-state concentrations of major elements are Si > Na , K > Ca > Al and the order of the dissolution rates is Si > Al > Na , K > Ca. Na had the highest steady-state concentration and fastest dissolution rate of the alkali and alkali earth metal ions. Based on surface analysis of plagioclase, dissolution was effected via a reaction layer of Na-montmorillonite on the mineral surface. Additionally, a reaction model constructed based on the experimentally observed reaction mechanism quantitatively explains the dissolution behavior. These results show that Na-montmorillonite can be precipitated by pyroclastic rock/meteoric water interactions without seawater involvement: the Na is derived from the host rocks. [source]


Principal features of impact-generated hydrothermal circulation systems: mineralogical and geochemical evidence

GEOFLUIDS (ELECTRONIC), Issue 3 2005
MIKHAIL V. NAUMOVArticle first published online: 14 JUL 200
Abstract Any hypervelocity impact generates a hydrothermal circulation system in resulting craters. Common characteristics of hydrothermal fluids mobilized within impact structures are considered, based on mineralogical and geochemical investigations, to date. There is similarity between the hydrothermal mineral associations in the majority of terrestrial craters; an assemblage of clay minerals,zeolites,calcite,pyrite is predominant. Combining mineralogical, geochemical, fluid inclusion, and stable isotope data, the distinctive characteristics of impact-generated hydrothermal fluids can be distinguished as follows: (i) superficial, meteoric and ground water and, possibly, products of dehydration and degassing of minerals under shock are the sources of hot water solutions; (ii) shocked target rocks are sources of the mineral components of the solutions; (iii) flow of fluids occurs mainly in the liquid state; (iv) high rates of flow are likely (10,4 to 10,3 m s,1); (v) fluids are predominantly aqueous and of low salinity; (vi) fluids are weakly alkaline to near-neutral (pH 6,8) and are supersaturated in silica during the entire hydrothermal process because of the strong predominance of shock-disordered aluminosilicates and fusion glasses in the host rocks; and (vii) variations in the properties of the circulating solutions, as well as the spatial distribution of secondary mineral assemblages are controlled by tempera ure gradients within the circulation cell and by a progressive cooling of the impact crater. Products of impact-generated hydrothermal processes are similar to the hydrothermal mineralization in volcanic areas, as well as in modern geothermal systems, but impacts are always characterized by a retrograde sequence of alteration minerals. [source]


Strontium Isotopic Identification of Water-Rock Interaction and Ground Water Mixing

GROUND WATER, Issue 3 2004
Carol D. Frost
87Sr/86Sr ratios of ground waters in the Bighorn and Laramie basins' carbonate and carbonate-cemented aquifer systems, Wyoming, United States, reflect the distinctive strontium isotope signatures of the minerals in their respective aquifers. Well water samples from the Madison Aquifer (Bighorn Basin) have strontium isotopic ratios that match their carbonate host rocks. Casper Aquifer ground waters (Laramie Basin) have strontium isotopic ratios that differ from the bulk host rock; however, stepwise leaching of Casper Sandstone indicates that most of the strontium in Casper Aquifer ground waters is acquired from preferential dissolution of carbonate cement. Strontium isotope data from both Bighorn and Laramie basins, along with dye tracing experiments in the Bighorn Basin and tritium data from the Laramie Basin, suggest that waters in carbonate or carbonate-cemented aquifers acquire their strontium isotope composition very quickly,on the order of decades. Strontium isotopes were also used successfully to verify previously identified mixed Redbeds-Casper ground waters in the Laramie Basin. The strontium isotopic compositions of ground waters near Precambrian outcrops also suggest previously unrecognized mixing between Casper and Precambrian aquifers. These results demonstrate the utility of strontium isotopic ratio data in identifying ground water sources and aquifer interactions. [source]


Isotope distribution of dissolved carbonate species in southeastern coastal aquifers of Sicily (Italy)

HYDROLOGICAL PROCESSES, Issue 20 2007
M. A. Schiavo
Abstract Concentrations of major ions and the ,13C composition of dissolved inorganic carbon in groundwater and submarine groundwater discharges in the area between Siracusa and Ragusa provinces, southeastern Sicily, representing coastal carbonate aquifers, are presented and discussed. Most of groundwater analysed belongs to calcium bicarbonate type, in agreement with the geological nature of carbonate host rocks. Carbonate groundwater acquires, besides the dissolution of carbonate minerals, dissolved carbon (and the relative isotopic composition) from the atmosphere and from soil biological activity. In fact, ,13C values and total dissolved inorganic carbon contents show that both these sources contribute to carbon dissolved species in the waters studied. Finally, mixing with seawater in the second main factor of groundwater mineralization Copyright © 2007 John Wiley & Sons, Ltd. [source]


A new Cosserat-like constitutive model for bedded salt rocks

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 15 2009
Yin-Ping Li
Abstract Salt rocks are commonly used as geologic host rocks for storage of gas and crude oil, and are being considered for the disposal of radioactive waste. Different from the salt rock domes in many countries, the salt rock formations in China are usually laminar with many alternating layers, i.e. rock salt, anhydrite, and/or mudstone. Considering the unique stratigraphic characteristics of these salt rocks, a new Cosserat-like medium constitutive model is proposed in order to facilitate efficient modeling of the mechanical behavior of these formations. In this model, a new representative volume element, containing two different layers, is employed to simulate the compatibility of the meso-displacement between two different layers and also the bending effect. A new method for the deformation and failure analysis of bedded salt rocks is derived therefrom. Having the macro-average stresses, the conventional stresses in the different layers can be obtained in sequence. The conventional stresses can then be utilized in a routine way for the strength and failure analysis. For the initial numerical modeling, the new Cosserat-like medium is reduced to a transversely isotropic one. The simplified constitutive model for layered media is then implemented into FLAC3D codes. A test sample validates that the results by using the numerical model are in good agreement with that by using the built-in model, and the mesh size for the new model is reduced greatly. Finally, an application for the stability of oil storage caverns in deep thinly bedded salt rocks is carried out. The effects on convergence of storage caverns and on the failure of surrounding rock due to the presence of the mudstone interlayers (hard phase) are discussed in detail. Copyright © 2009 John Wiley & Sons, Ltd. [source]


HYDROTHERMALLY FLUORITIZED ORDOVICIAN CARBONATES AS RESERVOIR ROCKS IN THE TAZHONG AREA, CENTRALTARIM BASIN, NW CHINA

JOURNAL OF PETROLEUM GEOLOGY, Issue 1 2006
Zhijun Jin
Reservoir rocks at the Tazhong 45 oil pool, central Tarim Basin, consist of fluoritized carbonate strata of Middle - Late Ordovician age. Petrological observations indicate that the fluorite replaces calcite. Several other hydrothermal minerals including pyrite, quartz, sphalerite and chlorite accompany the fluorite. Two generations of fluid inclusions are present in the fluorite. Homogenization temperatures (Th) for primary inclusions are mostly between 260°C and 310°C and represent the temperature of the hydrothermal fluid responsible for fluorite precipitation. Th for secondary inclusions range from 100°C to 130°C, and represent the hydrocarbon charging temperature as shown by the presence of hydrocarbons trapped in some secondary inclusions. The mineral assemblage and the homogenization temperatures of the primary fluid inclusions indicate that the precipitation of fluorite is related to hydrothermal activity in the Tazhong area. Strontium isotope analyses imply that the hydrothermal fluids responsible for fluorite precipitation are related to late-stage magmatic activity, and felsic magmas were generated by mixing of mafic magma and crustal materials during the Permian. Theoretical calculations show that the molecular volume of a carbonate rock decreases by 33.5% when calcite is replaced by fluorite, and the volume shrinkage can greatly enhance reservoir porosity by the formation of abundant intercrystalline pores. Fluoritization has thus greatly enhanced the reservoir quality of Ordovician carbonates in the Tazhong 45 area, so that the fluorite and limestone host rocks have become an efficient hydrocarbon reservoir. According to the modelled burial and thermal history of the Tazhong 45 well, and the homogenization temperatures of secondary fluid inclusions in the fluorite, hydrocarbon charging at the Tazhong 45 reservoir took place in the Tertiary. [source]


Magmatic evolution of the Mantos Blancos copper deposit, Coastal Range of northern Chile: insight from Sr,Nd isotope, geochemical data and silicate melt inclusions

RESOURCE GEOLOGY, Issue 2 2008
Luis E. Ramírez
Abstract The Mantos Blancos copper deposit (500 Mt at 1.0% Cu) was affected by two superimposed hydrothermal events: (i) phyllic alteration related to a rhyolitic dome emplacement and brecciation at ca 155 Ma; and (ii) potassic, sodic and propylitic alteration at ca 142 Ma, coeval with stocks and sills emplacement of dioritic and granodioritic porphyries, that locally grade upwards into polymictic magmatic hydrothermal breccias. Major hypogene copper sulfide mineralization is related to the second event. A late-ore mafic dike swarm cross-cuts all rocks in the deposit. Two types of granodioritic porphyries can be distinguished from petrographic observations and geochemical data: granodiorite porphyry I (GP I) and granodiorite porphyry II (GP II), which resulted from two different trends of magmatic evolution. The concave shape of the rare earth element (REE) distribution pattern together with the weak or absence of negative Eu anomalies in mafic dikes, dioritic and GP I porphyries, suggest hornblende-dominated fractionation for this magmatic suite. In contrast, distinct negative Eu anomalies and the flat REE patterns suggest plagioclase-dominated fractionation, at low oxygen fugacity, for the GP II porphyry suite. But shallow mixing and mingling between silicic and dioritic melts are also likely for the formation of the GP II and polymictic breccias, respectively. Sr-Nd isotopic compositions suggest that the rhyolitic dome rocks were generated from a dominantly crustal source, while the GP I has mantle affinity. The composition of melt inclusions (MI) in quartz crystals from the rhyolitic dome is similar to the bulk composition of their host rock. The MI analyzed in quartz from GP II and in the polymictic magmatic hydrothermal breccia of the deposit are compositionally more evolved than their host rocks. Field, geochemical and petrographic data provided here point to dioritic and siliceous melt interaction as an inducing mechanism for the release of hydrothermal fluids to form the Cu mineralization. [source]


Variations in Chemical Composition of Clay Minerals and Magnetic Susceptibility of Hydrothermally Altered Rocks in the Hishikari Epithermal Gold Deposit, SW Kyushu, Japan

RESOURCE GEOLOGY, Issue 1 2008
Hiroyasu Murakami
Abstract Hydrothermal alteration, involving chiefly chlorite and illite, is extensively distributed within host rocks of the Pleistocene Hishikari Lower Andesites (HLA) and the Cretaceous Shimanto Supergroup (SSG) in the underground mining area of the Hishikari epithermal gold deposit, Kagoshima, Japan. Approximately 60% of the mineable auriferous quartz-adularia veins in the Honko vein system occur in sedimentary rocks of the SSG, whereas all the veins of the Yamada vein system occur in volcanic rocks of the HLA. Variations in the abundance and chemical composition of hydrothermal minerals and magnetic susceptibility of the hydrothermally altered rocks of the HLA and SSG were analyzed. In volcanic rocks of the HLA, hydrothermal minerals such as quartz, chlorite, adularia, illite, and pyrite replaced primary minerals. The amount of hydrothermal minerals in the volcanic rocks including chlorite, adularia, illite, and pyrite as well as the altered and/or replaced pyroxenes and plagioclase phenocrysts increases toward the veins in the Honko vein system. The vein-centered variation in mineral assemblage is pronounced within up to 25 m from the veins in the peripheral area of the Honko vein system, whereas it is not as apparent in the Yamada vein system. The hydrothermal minerals in sandstone of the SSG occur mainly as seams less than a few millimeters thick and are sporadically observed in halos along the veins and/or the seams. The alteration halos in sandstone of the SSG are restricted to within 1 m of the veins. In the peripheral area of the Honko vein system, chlorite in volcanic rocks is characterized by increasing in Al in its tetrahedral layer and the Fe/Fe + Mg ratio toward the veins, while illite in volcanic rocks has relatively low K and a restricted range of Fe/Fe + Mg ratios. Temperature estimates derived from chlorite geothermometry rise toward the veins within the volcanic rocks. The magnetic susceptibility of tuff breccia of the HLA varies from 21 to less than 0.01 × 10,3 SI within a span of 40 m from the veins and has significant variation relative to that of andesite (27,0.06 × 10,3 SI). The variation peripheral to the Honko vein system correlates with an increase in the abundance of hematite pseudomorphs after magnetite, the percentage of adularia and chlorite with high Fe/Fe + Mg ratios, and the degree of plagioclase alteration with decreasing distance to the veins. In contrast, sedimentary rocks of the SSG maintain a consistent magnetic susceptibility across the alteration zone, within a narrow range from 0.3 to 0.2 × 10,3 SI. Magnetic susceptibility of volcanic rocks of the HLA, especially tuff breccia, could serve as an effective exploration tool for identifying altered volcanic rocks. [source]


Orogenic Gold Mineralization in the Qolqoleh Deposit, Northwestern Iran

RESOURCE GEOLOGY, Issue 3 2007
Farhang Aliyari
Abstract The Qolqoleh gold deposit is located in the northwestern part of the Sanandai-Sirjan Zone, northwest of Iran. Gold mineralization in the Qolqoleh deposit is almost entirely confined to a series of steeply dipping ductile,brittle shear zones generated during Late Cretaceous,Tertiary continental collision between the Afro-Arabian and the Iranian microcontinent. The host rocks are Mesozoic volcano-sedimentary sequences consisting of felsic to mafic metavolcanics, which are metamorphosed to greenschist facies, sericite and chlorite schists. The gold orebodies were found within strong ductile deformation to late brittle deformation. Ore-controlling structure is NE,SW-trending oblique thrust with vergence toward south ductile,brittle shear zone. The highly strained host rocks show a combination of mylonitic and cataclastic microstructures, including crystal,plastic deformation and grain size reduction by recrystalization of quartz and mica. The gold orebodies are composed of Au-bearing highly deformed and altered mylonitic host rocks and cross-cutting Au- and sulfide-bearing quartz veins. Approximately half of the mineralization is in the form of dissemination in the mylonite and the remainder was clearly emplaced as a result of brittle deformation in quartz,sulfide microfractures, microveins and veins. Only low volumes of gold concentration was introduced during ductile deformation, whereas, during the evident brittle deformation phase, competence contrasts allowed fracturing to focus on the quartz,sericite domain boundaries of the mylonitic foliation, thus permitting the introduction of auriferous fluid to create disseminated and cross-cutting Au-quartz veins. According to mineral assemblages and alteration intensity, hydrothermal alteration could be divided into three zones: silicification and sulfidation zone (major ore body); sericite and carbonate alteration zone; and sericite,chlorite alteration zone that may be taken to imply wall-rock interaction with near neutral fluids (pH 5,6). Silicified and sulfide alteration zone is observed in the inner parts of alteration zones. High gold grades belong to silicified highly deformed mylonitic and ultramylonitic domains and silicified sulfide-bearing microveins. Based on paragenetic relationships, three main stages of mineralization are recognized in the Qolqoleh gold deposit. Stage I encompasses deposition of large volumes of milky quartz and pyrite. Stage II includes gray and buck quartz, pyrite and minor calcite, sphalerite, subordinate chalcopyrite and gold ores. Stage III consists of comb quartz and calcite, magnetite, sphalerite, chalcopyrite, arsenopyrite, pyrrhotite and gold ores. Studies on regional geology, ore geology and ore-forming stages have proved that the Qolqoleh deposit was formed in the compression,extension stage during the Late Cretaceous,Tertiary continental collision in a ductile,brittle shear zone, and is characterized by orogenic gold deposits. [source]


Sulfur Isotope Geochemistry of the Supergiant Xikuangshan Sb Deposit, Central Hunan, China: Constraints on Sources of Ore Constituents

RESOURCE GEOLOGY, Issue 4 2006
Dong-sheng Yang
Abstract. The supergiant Xikuangshan Sb deposit is located in the Middle to Upper Devonian limestone of central Hunan, China. Primary ores are composed of early-stage stibnite and calcite with rare pyrite, early main-stage stibnite and quartz, and late main-stage stibnite and calcite. New sulfur isotope data reveal the clustering of ,34S values (+5 , +8 %) for both early and late main-stage stibnite; a single early-stage stibnite exhibits ,34S value (+7.5 %) identical to its main ore-stage counterparts and the coexisting calcite has almost unmodified carbon isotope composition (-4.4 %). The data suggest a probable common source of sulfur for stibnite that was deposited at different paragenetic stages. A much wider variation in ,34S values for early main-stage stibnite (+3.5 to +16.3 %, av. +7.5 %) compared to that for late main-stage stibnite (+5.3 to +8.1 %, av. +6.2 %) can be interpreted to be due to local interaction of earlier ore fluid with Devonian host rocks. The previous studies show that the Precambrian basement contains elevated Sb concentrations, and two distinctive sulfur reservoirs with ,34Spyrite values at ca. +11 , +24 % and -7.0 ,-11 %. The homogenizing effect for sulfur hydrothermally leached from the two reservoirs might have provided ore constituents for the Xikuangshan fluids. [source]


Origin of Paleofluids in Dabashan Foreland Thrust Belt: Geochemical Evidence of 13C, 18O and 87Sr/86Sr in Veins and Host Rocks

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 5 2010
ZENG Jianhui
Abstract: In the last ten years, with important discoveries from oil and gas exploration in the Dabashan foreland depression belt in the borderland between Shanxi and Sichuan provinces, the relationship between the formation and evolution of, and hydrocarbon accumulation in, this foreland thrust belt from the viewpoint of basin and oil and gas exploration has been studied. At the same time, there has been little research on the origin of fluids within the belt. Based on geochemical system analysis including Z values denoting salinity and research on ,13C, ,18O and 87Sr/86Sr isotopes in the host rocks and veins, the origin of paleofluids in the foreland thrust belt is considered. There are four principal kinds of paleofluid, including deep mantle-derived, sedimentary, mixed and meteoric. For the deep mantle-derived fluid, the ,13C is generally less than ,5.0,PDB, ,18O less than ,10.0,PDB, Z value less than 110 and 87Sr/86Sr less than 0.70600; the sedimentary fluid is mainly marine carbonate-derived, with the ,13C generally more than ,2.0,PDB, ,18O less than ,10.0,PDB, Z value more than 120 and 87Sr/86Sr ranging from 0.70800 to 0.71000; the mixed fluid consists mainly of marine carbonate fluid (including possibly a little mantle-derived fluid or meteoric water), with the ,13C generally ranging from ,2.0, to ,8.0,PDB, ,18O from ,10.0, to ,18.0, PDB, Z value from 105 to 120 and 87Sr/86Sr from 0.70800 to 0.71000; the atmospheric fluid consists mainly of meteoric water, with the ,13C generally ranging from 0.0, to ,10.0,PDB, ,18O less than ,8.0%cPDB, Z value less than 110 and 87Sr/86Sr more than 0.71000. The Chengkou fault belt encompasses the most complex origins, including all four types of paleofluid; the Zhenba and Pingba fault belts and stable areas contain a simple paleofluid mainly of sedimentary type; the Jimingsi fault belt contains mainly sedimentary and mixed fluids, both consisting of sedimentary fluid and meteoric water. Jurassic rocks of the foreland depression belt contain mainly meteoric fluid. [source]