Host Plants (host + plant)

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Host Plants

  • different host plant
  • larval host plant
  • natural host plant
  • novel host plant
  • same host plant

  • Terms modified by Host Plants

  • host plant preference
  • host plant quality
  • host plant resistance
  • host plant selection
  • host plant species
  • host plant use

  • Selected Abstracts

    A new stem-borer of the genus Bucculatrix (Lepidoptera: Bucculatricidae) from Japan, with description of the life history

    Shigeki KOBAYASHI
    Abstract A new species of bucculaticid moth, Bucculatrix hamaboella sp. nov. (Host plant: Hibiscus hamabo, Malvaceae) is described from Wakayama Prefecture, Japan. The feeding habit of the new species is unique in that: (i) the young larva is a leaf miner forming a long red linear mine but in the later instars the larva becomes a stem borer; (ii) later instar larvae undergo double molts within a cocoonet (molting cocoon); and (iii) penultimate and final instars appear on the surface of the leaf as non-feeding stages. The external non-feeding larvae of B. hamaboella undergoing double molts within one cocoonet are considered to be an abbreviated form of the external feeding instars of other bucculatricids typically making first and second cocoonets, undergoing a single molt within each cocoonet. On the basis of morphological characters, this species is related to the species of Sections I and II (Host: Asteraceae) of Braun (1963), rather than to the species of Section VIII (Host: Malvaceae). [source]

    Host plant affects pollen beetle (Meligethes aeneus) egg size

    Barbara Ekbom
    Abstract., In some herbivorous insect species, egg size is larger on low-quality hosts than on high-quality hosts and may be related to the prospect that larger offspring are more likely to survive on a poor host. Sizes of eggs laid by pollen beetles [Meligethes aeneus Fab. (Coleoptera: Nitidulidae)] were examined with insects confined on one of two different host plants that had previously shown differences in adult preference and larval performance. Individual females were also exposed sequentially to both the low-quality host (Sinapis alba L.) and the high-quality host (Brassica napus L.) and the size of their eggs was determined. Pollen beetles laid shorter eggs on low-quality hosts both for different females on different host plants and for the same individuals on different host plants, in contrast to the prediction that low-quality hosts would receive larger eggs than high-quality hosts. Previously, egg production rate was shown to be reduced when pollen beetles are exposed to low-quality hosts and it is suggested that oogenesis is incomplete, resulting in shorter eggs. The possibility that this is related to antibiosis on S. alba is discussed. [source]

    Host plants and butterfly biology.

    Do host-plant strategies drive butterfly status?
    Abstract., 1.,To determine whether rarity and decline is linked to organism ecology, associations have been examined between butterfly larval host-plant competitive, stress-tolerant, ruderal (C-S-R) strategies and butterfly biology. 2.,Associations have been sought between mean C-S-R scores for larval host plants with butterfly life history, morphology and physiology variables, resource use, population attributes, geography, and conservation status. Comparisons are carried out across species and controlled for phylogenetic patterning. 3.,Butterfly biology is linked to host-plant strategies. An increasing tendency of a butterfly's host plants to a particular strategy biases that butterfly species to functionally linked life-history attributes and resource breadth and type. In turn, population attributes and geography are significantly and substantially affected by host choice and the strategies of these host plants. 4.,The greatest contrast is between butterfly species whose host plants are labelled C and R strategists and those whose host plants are labelled S strategists. Increasingly high host-plant C and R strategy scores bias butterflies to rapid development, short early stages, multivoltinism, long flight periods, early seasonal emergence, higher mobility, polyphagy, wide resource availability and biotope occupancy, open, areally expansive, patchy population structures, denser distributions, wider geographical ranges, resistance to range retractions as well as to increasing rarity in the face of environmental changes. Increasing host-plant S strategy scores have reversed tendencies, biasing those butterfly species to extended development times, fewer broods, short flight periods, smaller wing expanse and lower mobility, monophagy, restricted resource exploitation and biotope occupancy, closed, areally limited populations with typical metapopulation structures, sparse distributions, and limited geographical ranges, range retractions, and increased rarity. 5.,Species with S strategy host plants are species vulnerable to current environmental changes and species of conservation concern. [source]

    Occurrence of Bremia lactucae in Natural Populations of Lactuca serriola

    I. Petr, elovŠ
    Abstract In the period 1996,2001 the natural occurrence of Bremia lactucae (lettuce downy mildew) on Asteraceae plants was studied in the Czech Republic. Lactuca serriola (prickly lettuce) is the most common naturally growing host species of B. lactucae. Infection of plants was recorded during the whole vegetation season with the first occurrence in April and last in November. Bremia lactucae was found on host plants in all developmental stages. High percentages of naturally infected populations of L. serriola were recorded. Host plants exhibited broad variation in phenotypic expression of disease symptoms and degree of infection, however, the intensity of infection was rather low in the majority of populations. Geographic distribution of B. lactucae was studied in the two main parts of Czech Republic, central and southern Moravia, and eastern, northern and central Bohemia. Bremia lactucae was recorded in all these areas. Nevertheless, in the warmest parts of the Czech Republic (southern Moravia) only sporadic occurrence of the pathogen was recorded. Bremia lactucae infection on L. serriola and disease severity was judged also in relation to the type of habitat, and the size and density of host plant populations. However, no substantial differences among various habitats were found; only host plants growing in urban areas were frequently free of infection and the degree of infection was very low. Nevertheless, these plants were commonly infected with powdery mildew (Golovinomyces cichoracearum), which is most aggressive pathogen of this type of habitat. [source]

    Populations of North American bean thrips, Caliothrips fasciatus (Pergande) (Thysanoptera: Thripidae: Panchaetothripinae) not detected in Australia

    Mark S Hoddle
    Abstract,Caliothrips fasciatus is native to the USA and western Mexico and overwintering adults are regular contaminants in the ,navel' of navel oranges exported from California, USA to Australia, New Zealand and elsewhere. Due to the long history of regular interceptions of C. fasciatus in Australia, a survey for this thrips was undertaken around airports, seaports, public recreational parks and major agricultural areas in the states of Queensland, New South Wales, Victoria, South Australia and Western Australia to determine whether C. fasciatus has successfully invaded Australia. Host plants that are known to support populations of C. fasciatus, such as various annual and perennial agricultural crops, urban ornamentals and weeds along with native Australian flora, were sampled for this thrips. A total of 4675 thrips specimens encompassing at least 76 species from a minimum of 47 genera, and three families were collected from at least 159 plant species in 67 families. Caliothrips striatopterus was collected in Queensland, but the target species, C. fasciatus, was not found anywhere. An undescribed genus of Thripidae, Panchaetothripinae, was collected from ornamental Grevillea (var. Robyn Gordon) at Perth (Western Australia) Domestic Airport, and is considered to be a native Australian species. This survey has provided valuable information on the background diversity of thrips species associated with various native and exotic plant species around major ports of entry and exit for four of five states in Australia. We suggest that the major reason C. fasciatus has not established in Australia is due to high adult mortality in navels that are kept at low storage temperatures (2.78įC) during an 18- to 24-day transit period from California to Australia. [source]

    Feeding and breeding across host plants within a locality by the widespread thrips Frankliniella schultzei, and the invasive potential of polyphagous herbivores

    M. Milne
    Abstract. Polyphagous insect herbivores could be expected to perform relatively well in new areas because of their ability to exploit alternative resources. We investigated relative abundance patterns of the polyphagous thrips species Frankliniella schultzei, which is characteristically found on plants from many different families, to establish the role of different host plant species in a single locality where the species is not indigenous (Brisbane, south-eastern Queensland, Australia). F. schultzei females and larvae were always present in flowers (where oviposition takes place) and never on leaves of the eight plant species that we surveyed regularly over one year. They were present in flowers of Malvaviscus arboreus in much higher densities than for any other host. F. schultzei females were more fecund and larvae developed faster on floral tissue diets of M. arboreus than on those of other hosts. M. arboreus is therefore regarded as the ,primary' host plant of F. schultzei in the locality that we investigated. The other species are regarded as ,minor' hosts. Available evidence indicates a common geographical origin of F. schultzei and M. arboreus. F. schultzei may therefore be primarily adapted to M. arboreus. The flowers of the minor species on which F. schultzei is also found may coincidentally share some features of the primary host. Adult thrips may therefore accumulate on minor hosts and breed there, but to a lesser extent than on the primary host. The general implications for investigating polyphagous host relationships and interpreting the ecology of these species as generalist invaders are spelt out. [source]

    Variation in the abundance of fungal endophytes in fescue grasses along altitudinal and grazing gradients

    ECOGRAPHY, Issue 3 2007
    Gustaf Granath
    EpichloŽ festucae, a common fungal symbiont of the genus Festuca (family Poaceae), can provide its host plant with protection against herbivores. However, infection might also be associated with a cost to its host plant. We examined the distribution of EpichloŽ festucae infection in natural populations of three fescue grasses, Festuca rubra, F. ovina and F. vivipara, on mountains in northern Sweden to determine whether infection frequency varied with reindeer Rangifertarandus grazing pressure and altitude. Two differently-scaled approaches were used: 1) infection frequency was measured at a local scale along ten elevational transects within a ca 400 km2 area and 2) infection frequency was measured on a regional scale along elevational transects on 17 mountains classified as having a history of high or low reindeer grazing pressure. Mean infection frequencies in F. rubra were 10% (vegetative tillers at a local scale), and 23% (flowering culms at a regional scale), and in F. ovina they were 13% (local scale) and 15% (regional scale). Endophyte infection frequency in F. vivipara, was, on average, 12% (local scale) and 37% (regional scale). In F. rubra, infection decreased significantly with increasing altitude at both the local and regional scale, and was positively correlated with grazing pressure. In F. ovina, an opposite trend was found at the regional scale: infection frequency increased significantly with increasing altitude, while no discernible distribution pattern was observed at the local scale. No elevational trends were observed in infection of F. vivipara. These patterns in the distribution of endophyte-infected grasses in non-agricultural ecosystems may be explained by both biotic (grazing) and abiotic factors (altitude). Differences in ecology and life history of the studied grass species may also be of importance for the different results observed among species. [source]

    Local host ant specificity of Phengaris (Maculinea) teleius butterfly, an obligatory social parasite of Myrmica ants

    1. Phengaris butterflies are obligatory social parasites of Myrmica ants. Early research suggested that there is a different Myrmica host species for each of the five European Phengaris social parasites, but more recent studies have shown that this was an oversimplification. 2. The pattern of host ant specificity within a Phengaris teleius metapopulation from southern Poland is reported. A combination of studying the frequency distribution of Phengaris occurrence and morphometrics on adult butterflies were used to test whether use of different host species is reflected in larval development. 3. Phengaris teleius larvae were found to survive in colonies of four Myrmica species: M. scabrinodis, M. rubra, M. ruginodis, and M. rugulosa. Myrmica scabrinodis was the most abundant species under the host plant but the percentage of infested nests was similar to other host ant species at two sites and lower in comparison to nests of M. rubra and M. ruginodis at the other two sites. Morphometric measurements of adult butterflies reared by wild colonies of M. scabrinodis and M. ruginodis showed that wing size and number of wing spots were slightly greater for adults eclosing from nests of M. ruginodis. 4. Our results suggest that P. teleius in the populations studied is less specialised than previously suggested. The results are consistent with the hypothesis that P. teleius is expected to be the least specific of the European Phengaris species, as it has the largest and best defended fourth-instar caterpillars and, as a predatory species, it spends less time in the central larval chambers of the host colonies. The fact that individuals reared by M. ruginodis had wider hind wings may suggest that P. teleius had better access to resources in M. ruginodis than in M. scabrinodis colonies. [source]

    Life-history strategy in an oligophagous tephritid: the tomato fruit fly, Neoceratitis cyanescens

    Abstract 1.,In phytophagous insects, life-history traits mainly depend on host plant range. Substantial longevity, high fecundity and larval competition are the major traits of polyphagous Tephritidae while species with a restricted host range generally exhibit a lower longevity and fecundity as well as mechanisms to avoid larval competition. Our aim in this study was to investigate the life history of an oligophagous species, the tomato fruit fly, Neoceratitis cyanescens (Bezzi). 2.,We determined life tables under laboratory conditions in order to calculate the main demographic parameters of N. cyanescens and studied the influence of larval and adult diet on life-history traits. 3.,The mean longevity of N. cyanescens females was 40 days. There was a strong synchronisation of female maturity. Oviposition showed an early peak at 9,13 days after a short pre-oviposition period (6 days). The absence of proteins in the adult diet both delayed ovarian maturation and decreased female fecundity. In addition, females originating from tomato fruits produced significantly more eggs than females originating from bugweed or black nightshade, showing that even the larval host plant may strongly affect the subsequent fecundity of adult females. 4.,The traits of N. cyanescens are then discussed in the light of those documented for polyphagous and monophagous tephritids. Neoceratitis cyanescens displayed attributes intermediate between those of polyphagous and monophagous tephritids. Its smaller clutch size compared with polyphagous species and its specialisation on the Solanaceae family whose fruits contain toxic compounds may help in reducing intra- and inter-specific competition, respectively. [source]

    Effects of nitrogen deposition on the interaction between an aphid and its host plant

    Abstract 1.,Anthropogenic increases in nitrogen deposition are impacting terrestrial ecosystems worldwide. While some of the direct ecosystem-level effects of nitrogen deposition are understood, the effects of nitrogen deposition on plant,insect interactions and on herbivore population dynamics have received less attention. 2.,Nitrogen deposition will potentially influence both plant resource availability and herbivore population growth. If increases in herbivore population growth outstrip increases in resource availability, then increases in the strength of density dependence expressed within the herbivore population would be predicted. Alternatively, if plant resources respond more vigorously to nitrogen deposition than do herbivore populations, a decline in the strength of density dependence would be expected. No change in the strength of density dependence acting upon the herbivore population would suggest equivalent responses by herbivores and plants. 3.,A density manipulation experiment was performed to examine the effect of nitrogen deposition on the interaction between a host plant, Asclepias tuberosa, and its herbivore, Aphis nerii. Aphid maximum per capita growth rate (Rmax), carrying capacity (K), and the strength of density dependence were measured under three nitrogen deposition treatments. The effect of nitrogen deposition on the relationship among these three measures of insect population dynamics was explored. 4.,Simulated nitrogen deposition increased aphid per capita population growth, plant foliar nitrogen concentrations, and plant biomass. Nitrogen deposition caused Rmax and K to increase proportionally, leading to no overall change in the strength of density dependence. In this system, potential changes in the negative feedback processes operating on herbivore populations following nitrogen deposition appear to be buffered by concomitant changes in resource availability. [source]

    Thrips see red , flower colour and the host relationships of a polyphagous anthophilic thrips

    A. YAKU
    Abstract 1.,The common blossom thrips, Frankliniella schultzei, is a polyphagous anthophilic species that colonises a wide range of host-plant species across different plant taxa. The environmental cues used by these polyphagous insects to recognise and locate host plants are not known. We therefore determined if colour is an important environmental signal used by F. schultzei to recognise flowers of eight of its more significant host-plant species. 2.,The effect of flower colour on the colonisation of different host plant species by F. schultzei was investigated by collecting and analysing the following: (a) numbers of thrips from different heights and aspects of the primary host plant Malvaviscus arboreus, (b) thrips distribution within flowers of Hibiscus rosasinensis, (c) colour reflectance from flowers of eight different host-plant species, and (d) reflectance from different coloured sticky traps and the number of thrips trapped on them at different times of the day and on different dates. 3.,The results indicate that: (a) the thrips (both sexes) concentrate towards the top of the primary host plant M. arboreus and are not distributed differentially according to sunny or shady aspect of the plant, (b) the number of female thrips on H. rosasinensis was higher in anthers compared to petals (corolla) and the basal parts of the flower, and males were as numerous on the petals as were females, and (c) there is a common floral reflectance pattern (but with different intensities) across the eight host plant species, mainly in the red part of the spectrum (600,700 nm). 4.,Results of colour sticky trapping show that red attracts more female thrips compared to any other colour and that most were caught between 09.00 and 11.00 hours. By contrast, more male thrips were trapped between 07.00 and 09.00 hours. Males were more evenly distributed across the different colours but the highest numbers were associated with the yellow traps. 5.,The higher densities of thrips at the top of their host plant may be related to the early morning (07.00,11.00 hours) activity of the thrips, when the top portions of the plant are more exposed to sunlight. The sex-related distributions of F. schultzei thrips across time, coloured sticky traps, and various parts of the flowers seem to be related to mating swarm formation by the males, on the one hand, and the relative frequency and intensity of the use of M. arboreus by the females, on the other, as a feeding and oviposition site. Frankliniella schultzei females respond more strongly to red than to any other colours, so it is predicted that the spectral properties of colour recognition by this species will correlate with the predominant red reflectance of its primary host, M. arboreus, and that there may well be a sex-related difference in colour recognition within this species. [source]

    Long-term effects of ungulates on phytophagous insects

    JOS… M. G”MEZ
    Abstract 1.,Most plants interact with a diverse suite of herbivores, allowing the opportunity for the existence of positive and negative interactions between highly dissimilar organisms. However, most studies on herbivorous interactions have been performed under the assumption that they occur mainly between similar species. Consequently, ecologists are still far from a full understanding of the ecological factors that determine insect population dynamics. 2.,In this study, a 7-year field experiment was conducted that manipulated the presence of ungulates to evaluate their effects on the abundance, attack rate, and survival of four guilds of co-occurring herbivorous insects living on the same host plant: seed predators, stem borers, gall makers and sap suckers. These four guilds differed in habits and behaviour, the first three being sessile and endophytic and the last being free-living. 3.,This study shows that the abundance of all four guilds was negatively affected by ungulates. However, the effect on attack rate differed among guilds, as mammals do not affect the seed predator attack rate. Ungulates also differentially affected insect survival, ingesting only seed predators and gall makers. 4.,In summary, this study suggests that diverse mechanisms may affect different insect guilds in different ways. Therefore, competition between disparate herbivores appears to be complex and can be provoked by multiple mechanisms. [source]

    Non-random distribution among a guild of parasitoids: implications for community structure and host survival

    Abstract 1.,Immature stages of the gall midge, Asphondylia borrichiae, are attacked by four species of parasitoids, which vary in size and relative abundance within patches of the gall midge's primary host plant, sea oxeye daisy (Borrichia frutescens). 2.,In the current study, a bagging experiment found that the smallest wasp, Galeopsomyia haemon, was most abundant in galls exposed to natural enemies early in the experiment, when gall diameter is smallest, while the wasp with the longest ovipositor, Torymus umbilicatus, dominated the parasitoid community in galls that were not exposed until the 5th and 6th weeks when gall diameter is maximal. 3.,Moreover, the mean number of parasitoids captured using large artificial galls were 70% and 150% higher compared with medium and small galls respectively, while stem height of artificial galls significantly affected parasitoid distribution. Galls that were level with the top of the sea oxeye canopy captured 60% more parasitoids compared with those below the canopy and 50% more than galls higher than the plant canopy. 4.,These non-random patterns were driven primarily by the differential distribution of the largest parasitoid, T. umbilicatus, which was found significantly more often than expected on large galls and the smallest parasitoid of the guild, G. haemon, which tended to be more common on stems level with the top of the plant canopy. 5.,Large Asphondylia galls, especially those located near the top of the Borrichia canopy, were more likely to be discovered by searching parasitoids. Results using artificial galls were consistent with rates of parasitism of Asphondylia galls in native patches of sea oxeye daisy. Gall diameter was 19% greater and the rate of parasitism was reduced by almost 50% on short stems; as a result, gall abundance was 24% higher on short stems compared with ones located near the top of the plant canopy. 6.,These results suggest that parasitoid community composition within galls is regulated by both interspecific differences in ovipositor length and preferences for specific gall size and/or stem length classes. [source]

    Trade-off in oviposition strategy: choosing poor quality host plants reduces mortality from natural enemies for a salt marsh planthopper

    Abstract 1.,Both host plant nutrition and mortality from natural enemies have been predicted to significantly impact host plant selection and oviposition behaviour of phytophagous insects. It is unclear, however, if oviposition decisions maximise fitness. 2.,This study examined whether the salt marsh planthopper Pissonotus quadripustulatus prefers higher quality host plants for oviposition, and if oviposition decisions are made so as to minimise mortality at the egg stage. 3.,A controlled laboratory experiment and 4 years of field data were used to assess the rates of planthopper oviposition on higher quality ,green' and lower quality ,woody' stems of the host plant Borrichia frutescens. The numbers and percentages of healthy eggs and eggs that were killed by parasitoids or the host plant were recorded. 4.,In all years, including the laboratory experiment, Pissonotus planthoppers laid more eggs on lower quality woody stems than on higher quality green stems. While host plant related egg mortality was higher in woody stems, the percentage of eggs parasitised was much greater in green stems. This resulted in a lower total mortality of eggs on woody stems. 5.,The results of this study demonstrate that, although Pissonotus prefers lower quality host plants for oviposition, this actually increases fitness. These data seem to support the enemy free space hypothesis, and suggest that for phytophagous insects that experience the majority of mortality in the egg stage, oviposition choices may be made such that mortality is minimised. [source]

    Dropping behaviour of larvae of aphidophagous ladybirds and its effects on incidence of intraguild predation: interactions between the intraguild prey, Adalia bipunctata (L.) and Coccinella septempunctata (L.), and the intraguild predator, Harmonia axyridis Pallas

    Satoru Sato
    Abstract., 1.,Two experiments were performed in the laboratory to assess the behaviour of dropping from a host plant as a defence against intraguild predation in aphidophagous ladybird larvae. 2.,In the first experiment, encounters were observed on bean plants between fourth instars of the intraguild predator species, Harmonia axyridis, and first instars of two other ladybird species, Adalia bipunctata (L.) and Coccinella septempunctata (L.). The percentages of first instars of the latter two species that dropped from the plant in response to attack differed dramatically, with 47.5% of C. septempunctata first instars dropping vs. 0% of A. bipunctata. 3.,In the second experiment, first instars of A. bipunctata or C. septempunctata and a fourth instar of H. axyridis were allowed to forage together on bean plants for 3 h. During this time, 44.3% of C. septempunctata larvae dropped from the plant, but less than 2% of A. bipunctata larvae did so. In contrast, 95.0% of A. bipunctata larvae fell victim to intraguild predation by H. axyridis vs. only 54.5% of C. septempunctata larvae. 4.,The significance of dropping behaviour of ladybird larvae as a defence against intraguild predation, and the relationship of dropping behaviour to species-specific habitat affinity of ladybirds, is discussed. [source]

    Dispersal ability and host-plant characteristics influence spatial population structure of monophagous beetles

    Matthew J. St Pierre
    Abstract., 1. Dispersal plays an integral role in determining spatial population structure and, consequently, the long-term survival of many species. Theoretical studies indicate that dispersal increases with population density and decreasing habitat stability. In the case of monophagous insect herbivores, the stability of host-plant populations may influence their spatial population structure. 2. The tallgrass prairie in Iowa, U.S.A. is highly fragmented and most prairie insects face a landscape with fewer habitat patches and smaller host-plant populations than 150 years ago, potentially making dispersal between patches difficult. Some herbivores, however, use native plant species with weedy characteristics that have increased in abundance because of disturbances. 3. Mark,recapture data and presence,absence surveys were used to examine dispersal and spatial population structure of two monophagous beetles with host plants that exhibit different population stability and have responded differently to fragmentation of tallgrass prairie. 4. Chrysochus auratus Fabricius exhibits a patchy population structure and has relatively large dispersal distances and frequencies. Its host plant is variable locally in time and space, but is more abundant than 150 years ago. The other species, Anomoea laticlavia Forster, exhibits a metapopulation or non-equilibrium population structure and has relatively small dispersal distances and frequencies. Its host-plant populations are stable in time and space. 5. The results indicate that dispersal ability of monophagous beetles reflects the life-history dynamics of their host plants, but the spatial population structure exhibited today is strongly influenced by how the host plants have responded to the fragmentation process over both time and space. [source]

    The significance of overlapping plant range to a putative adaptive trade-off in the black bean aphid Aphis fabae Scop

    C. R. Tosh
    Abstract., 1. This study continues to explore the analysis of a putative adaptive trade-off in the utilisation of host plants Vicia faba and Tropaeolum majus by the aphid, Aphis fabae. These plants are utilised exclusively by the subspecies Aphis fabae fabae and A. f. mordwilkoi respectively, and this plant-use system has been studied previously as a potential source of disruptive selection. 2. Here the potential of these two host plants to generate disruptive selection is considered given common utilisation of the abundant host plant, Rumex obtusifolius, by both subspecies. 3. The life history of subspecific clones is quantified in the laboratory on V. faba, T. majus, and R. obtusifolius at various temperatures and used to parameterise a temperature-driven simulation model of aphid population development. 4. Accuracy of the model is tested using a field experiment, and fitness of clones on specific and common host is simulated using temperature data from a number of English sites. 5. The model gives a close quantitative fit to field data and makes the following predictions: performance of A. f. fabae is higher on the specific host than the common host under all tested thermal regimes; and performance of A. f. mordwilkoi is superior on the specific host in warm years but inferior in cold years. 6. Given the great abundance of R. obtusifolius relative to T. majus, the model predicts that the plant utilisation system has little potential to consistently promote hybrid dysfunction. This adds further weight to the assertion that the plant utilisation system studied can offer little insight into the evolutionary processes involved in subspecific differentiation and probably contains a host plant/host plants acquired after the evolution of reproductive barriers. [source]

    Tritrophic interactions and trade-offs in herbivore fecundity on hybridising host plants

    Maria V. Cattell
    Abstract., 1. Interspecific plant hybridisation can have important evolutionary consequences for hybridising plants and for the organisms that they interact with on multiple trophic levels. In this study the effects of plant hybridisation on the abundance of herbivores and on the levels of herbivore parasitism were investigated. 2. Borrichia frutescens, B. arborescens, and their hybrid (B. ◊ cubana) were censused for Asphondylia borrichiae galls and Pissonotus quadripustulatus plant hoppers in the Florida Keys. Levels of egg parasitism were determined by dissecting parental and hybrid stems and galls for herbivore and parasite eggs and larvae. Stem toughness and gall size are plant-mediated modes of protection from parasitism and these were also measured. For gall midges, fly size was measured as an estimate of fecundity. 3. Field censuses indicated that herbivore abundances varied on hybrid hosts relative to parent plant species and that the different herbivore species exhibited different patterns of abundance. Asphondylia borrichiae gall numbers followed the additive pattern of abundance while P. quadripustulatus numbers most closely resembled the dominance pattern. 4. Parasitism of P. quadripustulatus eggs was high on B. frutescens and the hybrids, and low on B. arborescens, which also had significantly tougher stems. Asphondylia borrichiae suffered the highest levels of parasitism on B. frutescens, the host plant which produced the smallest galls. On B. arborescens, which produced the largest galls, levels of A. borrichiae parasitism were lowest. Both parasitism and gall size were intermediate on the hybrid plants. Galls on B. arborescens and hybrid plants produced significantly smaller flies then those from B. frutescens suggesting that, when selecting hosts from among parent species and hybrids, gall flies may face a trade-off between escape from natural enemies and maximising fecundity. [source]

    Wedged between bottom-up and top-down processes: aphids on tansy

    Bernhard Stadler
    Abstract., 1. Many species of aphids exploit a single host-plant species and have to cope with changing environmental conditions. They often vary greatly in abundance even when feeding on the same host. In a field experiment, the bottom-up (plant quality/patch type frequency) and top-down (ant attendance/predation) effects on the abundance of four species of aphids feeding on tansy (Tanacetum vulgare) were tested using a full factorial design. In addition, a model was used to examine these patch characteristics for their relative effects on the population dynamics and abundance of different aphid species. 2. Aphid numbers changed significantly depending on the quality of the host plant and the presence/absence of attending ants. The obligate myrmecophile, Metopeurum fuscoviride, was abundant on high-quality plants, while on poor quality plants or on plants without attending ants these aphids did not survive until the end of the experiment. The facultative myrmecophiles, Aphis fabae and Brachycaudus cardui, and the unattended aphid species, Macrosiphoniella tanacetaria, all reached similar peak population densities, but M. tanacetaria did best in poor quality patches. 3. Natural enemies reduced aphid numbers, but those species feeding on high-quality plants survived longer than those on poor-quality plants, which existed only for a short period of time, especially when associated with ants. Losses due to migration of winged morphs and mortality caused by parasitoids were insignificant. 4. Varying the frequency of different patch types in a model indicates that different degrees of associations with ants are favoured in different environments. If the proportion of high-quality patches in a habitat is large, obligate myrmecophiles do best. On increasing the number of poor-quality patches, unattended species become more abundant. 5. The results suggest that, in spite of large species specific differences in growth rates, degree of myrmecophily or life cycle features, the temporal and spatial variability in top-down and bottom-up forces differentially affects aphid species and allows the simultaneous exploitation of a shared host-plant species. [source]

    Tracking larval insect movement within soil using high resolution X-ray microtomography

    Scott N. Johnson
    Abstract., 1. In contrast to above-ground insects, comparatively little is known about the behaviour of subterranean insects, due largely to the difficulty of studying them in situ. 2. The movement of newly hatched (neonate) clover root weevil (Sitona lepidus L. Coleoptera: Curculinidae) larvae was studied non-invasively using recently developed high resolution X-ray microtomography. 3. The movement and final position of S. lepidus larvae in the soil was reliably established using X-ray microtomography, when compared with larval positions that were determined by destructively sectioning the soil column. 4. Newly hatched S. lepidus larvae were seen to attack the root rhizobial nodules of their host plant, white clover (Trifolium repens L.). Sitona lepidus larvae travelled between 9 and 27 mm in 9 h at a mean speed of 1.8 mm h,1. 5. Sitona lepidus larvae did not move through the soil in a linear manner, but changed trajectory in both the lateral and vertical planes. [source]

    Host shifting by Operophtera brumata into novel environments leads to population differentiation in life-history traits

    Adam J. Vanbergen
    Abstract., 1. Operophtera brumata L. (Lepidoptera: Geometridae), a polyphagous herbivore usually associated with deciduous trees such as oak Quercus robur L., has expanded its host range to include the evergreen species heather Calluna vulgaris (L.) Hull and, most recently, Sitka spruce Picea sitchensis (Bong.) CarriŤre. 2. Phenology, morphology, and survival of O. brumata were measured at several life-history stages in populations from the three different host plant communities sampled from a range of geographical locations. The data were used to test for population differences, reflecting the marked differences in host-plant secondary chemistry, growth form, and site factors such as climate. The hypothesis that spruce-feeding populations originated from populations feeding on moorland, commonly sites of coniferous afforestation, was also tested. 3. Altitude, not host plant species, was the major influence on the timing of adult emergence. An effect of insect population independent of altitude was found, implying that additional unidentified factors contribute to this phenological variation. Larval survival and adult size varied between populations reared on different host plant species. Survival of larvae was affected negatively when reared on the novel host plant, Sitka spruce, versus the natal plant (oak or heather) but oak and heather-sourced insects did not differ in survivorship on Sitka spruce. 4. Host range extension into novel environments has resulted in population differentiation to the local climate, demonstrating that host shifts pose challenges to the herbivore population greater than those offered by the host plant alone. The hypothesis that Sitka spruce feeding populations have arisen predominantly from moorland feeding populations was not supported. [source]

    The community-wide and guild-specific effects of pubescence on the folivorous insects of manzanitas Arctostaphylos spp.

    Melissa R. Andres
    Abstract., 1.,Insect communities on 26 species of manzanita Arctostaphylos spp. (Ericaceae) were sampled in order to examine the effects of variation in foliar pubescence traits on a community of folivorous insects. Manzanitas vary widely in pubescence density, length, and glandularity both within and between species. 2.,Linear models were fitted and evaluated to determine whether pubescence traits are associated with the species richness and abundance of folivorous insects after accounting for the effects of other relevant habitat and host-plant related characteristics. 3.,Pubescence traits were clearly associated with both community-wide and guild-specific variation in the structure of the folivorous insect community of manzanitas, however the effects of pubescence were manifested primarily as effects on the abundance of folivores not on species richness. The species richness of folivorous insects on manzanitas was not associated with pubescence density or length but was associated positively with glandularity. 4.,The abundance of all guilds except leaf-mining insects was lower on manzanitas having longer pubescence. In contrast, the abundance of external-chewing insects was higher on plants having denser pubescence and on plants having glandular pubescence. 5.,Overall, the results suggest that both longer pubescence and the amount of contact between an insect and pubescence act quantitatively to decrease the abundance of external-feeding guilds of folivorous insects. The abundance of species in internal-feeding guilds that oviposit directly on leaves is unrelated to foliar pubescence traits in the host plant. [source]

    Cascading effects of variation in plant vigour on the relative performance of insect herbivores and their parasitoids

    Tiit Teder
    Abstract 1. Consequences of variation in food plant quality were estimated for a system consisting of two monophagous noctuid herbivores and three ichneumonid parasitoids. 2. In a natural population, pupal weights of the herbivores in this system, Nonagria typhae and Archanara sparganii, were found to be highly variable. Pupal weights increased strongly and consistently with the increase in the vigour of the host plant, Typha latifolia, providing support for the plant vigour hypothesis. Correspondingly, as the moths do not feed as adults, a strong, positive correlation between host vigour and fecundity of the herbivores would be expected. 3. There were strong and positive relationships between adult body sizes of the parasitoids and the sizes of their lepidopteran hosts. Moreover, a direct, positive link between plant quality and parasitoid size was documented. 4. For all three parasitoids, cascading effects of plant quality on body size were weaker than for the herbivores. Differences in the importance of adult feeding and oviposition behaviour suggest that dependence of fitness on body size is also weaker in the parasitoids than in the moths. It is therefore concluded that the numerical response of the herbivore population to a change in plant quality should exceed the corresponding response in the parasitoids. 5. The results of this work imply that variation in plant variables may affect performance of different trophic levels to a different extent. It is suggested that the importance of adult feeding for the reproductive success (capital vs. income breeding strategies) in both herbivores and parasitoids is an essential aspect to consider when predicting responses of such a system to changes in plant quality. [source]

    The influence of host plant variation and intraspecific competition on oviposition preference and offspring performance in the host races of Eurosta solidaginis

    Timothy P. Craig
    Summary 1. A series of experiments was conducted to measure the impact of plant genotype, plant growth rate, and intraspecific competition on the oviposition preference and offspring performance of the host races of Eurosta solidaginis (Diptera: Tephritidae), a fly that forms galls on Solidago altissima and Solidago gigantea (Asteraceae). Previous research has shown that both host races prefer to oviposit on their own host plant where survival is much higher than on the alternate host plant. In this study, neither host race showed any relationship between oviposition preference and offspring performance in choosing among plants of their natal host species. 2. The larval survival of both host races differed among plant genotypes when each host race oviposited on its natal host species. In one experiment, altissima host race females showed a preference among plant genotypes that was not correlated with offspring performance on those genotypes. In all other experiments, neither the altissima nor gigantea host race demonstrated a preference for specific host plant genotypes. 3. Eurosta solidaginis had a preference for ovipositing on rapidly growing ramets in all experiments, however larval survival was not correlated with ramet growth rate at the time of oviposition. 4. Eurosta solidaginis suffered high mortality from intraspecific competition in the early larval stage. There was little evidence, however, that females avoided ovipositing on ramets that had been attacked previously. This led to an aggregated distribution of eggs among ramets and strong intraspecific competition. 5. There was no interaction among plant genotype, plant growth rate, or intraspecific competition in determining oviposition preference or offspring performance. [source]

    Role of prey,host plant associations on Harmonia axyridis and Episyrphus balteatus reproduction and predatory efficiency

    Ammar Alhmedi
    Abstract In order to predict possible locations of Harmonia axyridis Pallas (Coleoptera: Coccinellidae) and Episyrphus balteatus DeGeer (Diptera: Syrphidae) in the field, we studied their oviposition and prey preferences in relation to several host plant,prey associations under laboratory conditions. Oviposition preference of H. axyridis and E. balteatus females was determined for three aphid (Homoptera: Aphididae),host plant associations: Microlophium carnosum Buckton on stinging nettle [Urtica dioica L. (Urticaceae)], Acyrthosiphon pisum Harris on green pea [Pisum sativum L. (Fabaceae)], and Sitobion avenae F. on wheat [Triticum aestivum L. (Poaceae)]. Prey preference of H. axyridis and E. balteatus larvae was determined with the aphids M. carnosum, A. pisum, and S. avenae. Harmonia axyridis females showed a strong oviposition preference for the stinging nettle,M. carnosum association. The preferred association for ovipostion by E. balteatus was pea-hosting A. pisum, on which fecundity was also highest. Feeding behaviour was less restricted in H. axyridis, in which the preferred preys were M. carnosum and S. avenae. A lower specificity of predation was observed in E. balteatus larvae with respect to A. pisum. These laboratory experiments may help us to understand the spatial distribution of H. axyridis and E. balteatus in the field. [source]

    Predatory hoverflies select their oviposition site according to aphid host plant and aphid species

    Raki Almohamad
    Abstract The hoverfly Episyrphus balteatus De Geer (Diptera: Syrphidae) is an abundant and efficient aphid-specific predator. Several aphidophagous parasitoids and predators are known to respond positively to aphid-infested plants. Semiochemicals from the latter association usually mediate predator/parasitoid foraging behavior toward sites appropriate for offspring fitness. In this study, we investigated the effect of aphid host plant and aphid species on foraging and oviposition behavior of E. balteatus. Behavioral observations were conducted using the Noldus Observer v. 5.0, which allows observed insect behavior to be subdivided into different stages. Additionally, the influence of aphid species and aphid host plant on offspring fitness was tested in a second set of experiments. Acyrthosiphon pisum Harris and Megoura viciae Buckton were equally attractive for E. balteatus whereas Aphis fabae Scopoli (all Homoptera: Aphididae) were less attractive. These results were correlated with (i) the number of eggs laid, which was significantly higher for the two first aphid species, and (ii) the fitness of hoverfly larvae, pupae, and adults. Two solanaceous plant species, Solanum nigrum L. and Solanum tuberosum L. (Solanaceae), which were infested with Myzus persicae Sulzer (Homoptera: Aphididae), were also compared using the same approach. Discrimination between these two M. persicae host plants was observed, with S. tuberosum being preferred as an oviposition site by the predatory hoverfly. Larval and adult fitness was correlated with the behavioral observations. Our results demonstrated the importance of the prey,host plant association on the choice of the oviposition site by an aphid predator, which is here shown to be related to offspring fitness. [source]

    Companion planting , behaviour of the cabbage root fly on host plants and non-host plants

    Kate Morley
    Abstract Six-hundred individual female cabbage root flies (Delia radicum L.) (Diptera: Anthomyiidae) were each observed for 20 min under laboratory conditions to record how they behaved after landing on a host or a non-host plant. Fly movements were recorded on host plants [cabbage ,Brassica oleracea var. capitata (Cruciferae)] and non-host plants [clover ,Trifolium subterraneum L. (Papilionaceae)] surrounded by bare soil and on cabbage surrounded by clover. The most frequently observed behaviours made by the flies were (1) hops/spiral flights and (2) walks/runs. In the bare soil situation, the 50 individual flies observed in each treatment made 66 hops/spiral flights on the cabbage and 94 on the clover. When the two plants were tested together the movements were not additive as, instead of the expected 160 hops/spiral flights in the mixed plant treatment, the flies made 210 hops/spiral flights when they landed initially on cabbage but only 130 when they landed initially on clover. Few of the flies that landed initially on clover moved onto the host plant, even though the host plant was only a few centimetres away. The duration of the individual walks and runs made by the cabbage root flies were similar on both the host and non-host plants. The only differences were the numbers of walks/runs made and the time the flies remained inactive. On the host plants, the females made four walks/runs, each of about 12 s duration, interspersed by rest periods that totalled 1.5 min. In contrast, on the non-host plants the females made 10 walks/runs, each of about 9 s duration, interspersed by rest periods that totalled 7 min. Therefore, after landing on a plant, the flies, on average, left the host plant after 2.25 min and the non-host plant after 8.5 min. Our conclusion is that the protracted time spent on the non-host plants is the mechanism that disrupts insects from finding host plants in diverse plantings. Hence, the flies were arrested by non-host plants rather than being repelled or deterred as suggested in earlier studies. [source]

    Maintenance of narrow diet breadth in the monarch butterfly caterpillar: response to various plant species and chemicals

    Danel B. Vickerman
    Abstract In order to better understand the maintenance of a fairly narrow diet breadth in monarch butterfly larvae, Danaus plexippus L. (Lepidoptera: Nymphalidae: Danainae), we measured feeding preference and survival on host and non-host plant species, and sensitivity to host and non-host plant chemicals. For the plant species tested, a hierarchy of feeding preferences was observed; only plants from the Asclepiadaceae were more or equally preferred to Asclepias curassavica, the common control. The feeding preferences among plant species within the Asclepiadaceae are similar to published mean cardenolide concentrations. However, since cardenolide data were not collected from individual plants tested, definitive conclusions regarding cardenolide concentrations and plant acceptability cannot be made. Although several non-Asclepiadaceae were eaten in small quantities, all were less preferred to A. curassavica. Additionally, these non-Asclepiadaceae do not support continued feeding, development, and survival of first and fifth-instar larvae. Preference for a host versus a non-host (A. curassavica versus Vinca rosea) increased for A. curassavica reared larvae as compared to diet-reared larvae suggesting plasticity in larval food preferences. Furthermore, host species were significantly preferred over non-host plant species in bioassays using a host plant or sucrose as a common control. Larval responses to pure chemicals were examined in order to determine if host and non-host chemicals stimulate or deter feeding in monarch larvae. We found that larvae were stimulated to feed by some ubiquitous plant chemicals, such as sucrose, inositol, and rutin. In contrast, several non-host plant chemicals deterred feeding: caffeine, apocynin, gossypol, tomatine, atropine, quercitrin, and sinigrin. Additionally the cardenolides digitoxin and ouabain, which are not in milkweed plants, were neutral in their influence on feeding. Another non-milkweed cardenolide, cymarin, significantly deterred feeding. Extracts of A. curassavica leaves were tested in bioassays to determine which components of the leaf stimulate feeding. Both an ethanol extract of whole leaves and a hexane leaf-surface extract are phagostimulatory, suggesting the involvement of both polar and non-polar plant compounds. These data suggest that the host range of D. plexippus larvae is maintained by both feeding stimulatory and deterrent chemicals in host and non-host plants. [source]

    Adaptation of a generalist moth, Operophtera brumata, to variable budburst phenology of host plants

    Olli-Pekka Tikkanen
    Abstract The adaptation of three allopatric populations of a generalist moth, Operophtera brumata (L.), on two tree species, Prunus padus (L.) and Quercus robur (L.) which represent the extremes of the timing of budburst in spring, was studied in Finland and Sweden. The synchrony of the hatching and budbursting was monitored, and its importance to dispersal and growth of larvae was assessed by rearing cohorts of larvae, whose hatching dates were manipulated, on both hosts. In addition, the realised heritability of the hatching time was estimated. Experimental populations hatched in approximate synchrony with the budburst of their original host species. As a result of the manipulation of the hatching dates of larvae, the growth rates of larvae decreased and the dispersal rates increased on both hosts in relation to the ageing of foliage. The realised heritability of hatching times was rather high (0.63). There were fewer differences in the host use efficiency and behaviour of the experimental populations than in the hatching phenology. The synchrony of hatching with the budburst of the local dominant host plant is probably a result of stabilising selection. [source]

    Preference and performance of the sawfly Diprion pini on host and non-host plants of the genus Pinus

    Florence Barre
    Abstract The sawfly, Diprion pini L., is a pest of Pinus in Europe and is mainly found on P. sylvestris L. and P. nigra laricio Poiret. The relative importance of female oviposition capacity and behaviour, egg development, and larval survival on a new host plant was measured on 11 pine species. Five were natural host plants and six non-host plants, five of which are not indigenous to Europe. Oviposition choice tests showed that females discriminated between the pine species. Egg and larval development also differed between pine species. However, the female choice was not linked with hatching rate and larval development. Results of biological tests clearly indicated that there were different response patterns of D. pini life stages in relation to pine species, and these patterns were the same with insects of four different origins. We discuss the importance of each potential barrier to colonisation of a new host. [source]