Host Nests (host + nest)

Distribution by Scientific Domains


Selected Abstracts


Low level of cuticular hydrocarbons in a parasitoid of a solitary digger wasp and its potential for concealment

ENTOMOLOGICAL SCIENCE, Issue 1 2009
Johannes KROISS
Abstract Insect cuticular hydrocarbons (CHC) play a role as semiochemicals in many host,parasite systems and chemical mimicry or camouflage is a well-known mechanism of parasites to evade detection by the host. The cuckoo wasp Hedychrum rutilans (Hymenoptera, Chrysididae) is a parasitoid of larvae of the European beewolf Philanthus triangulum (Hymenoptera, Crabronidae). Females chemically mimic the cuticular hydrocarbons of their hosts to avoid detection and countermeasures when entering the host nest for oviposition. Here we report on a possible second mechanism of the chrysidid wasp H. rutilans to evade detection: the amount of CHC/mm2 of cuticle is only approximately one-fifth compared to its beewolf host. Furthermore, we show that surprisingly large amounts of CHC of beewolf females can be found on the walls of the underground nest. Potentially, these hydrocarbons might constitute a background odor against which the cuckoo wasps or their chemical traces have to be perceived by the beewolf. The reduction in the amount of CHC of the cuckoo wasps might be equivalent to a dilution of recognition cues, especially against the background odor of the nest walls, and might provide a means to escape detection within the nest due to "chemical insignificance". [source]


Segregation of temporal and spatial distribution between kleptoparasites and parasitoids of the eusocial sweat bee, Lasioglossum malachurum (Hymenoptera: Halictidae, Mutillidae)

ENTOMOLOGICAL SCIENCE, Issue 2 2009
Carlo POLIDORI
Abstract Cuckoo bees and velvet ants use different resources of their shared host bees, the former laying eggs on the host pollen stores and the latter on immature stages. We studied the activity patterns of the cuckoo bee Sphecodes monilicornis and the velvet ant Myrmilla capitata at two nesting sites of their host, the social digger bee Lasioglossum malachurum, over a 3 year period. Due to the difference in host exploitation, we expected different temporal patterns of the two natural enemies as well as a positive spatial association with host nest density for both species. At a daily level, S. monilicornis was more abundant between 10.00 and 15.00 h, while M. capitata was most active in the early morning and late afternoon; both species activities were independent from host provisioning activity. The activity of cuckoo bees was in general positively correlated with the density of open host nests (but not with the total number of nests), while that of velvet ants was rarely correlated with this factor. Sphecodes monilicornis was seen both attacking the guard bees and directly entering into the host nests or digging close to nest entrances, while M. capitata only gained access to host nests through digging. We conclude that the temporal and spatial segregation between the two species may be, at least partially, explained both by the different resources exploited and by the different dynamics of host interactions. [source]


Do cuckoos choose nests of great reed warblers on the basis of host egg appearance?

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 3 2007
M. I. CHERRY
Abstract Prevailing theory assumes cuckoos lay at random among host nests within a population, although it has been suggested that cuckoos could choose large nests and relatively active pairs within host populations. We tested the hypothesis that egg matching could be improved by cuckoos choosing nests in which host eggs more closely match their own, by assessing matching and monitoring nest fate in great reed warblers naturally or experimentally parasitized by eggs of European cuckoos. A positive correlation between cuckoo and host egg visual features suggests that cuckoos do not lay at random within a population, but choose nests and this improves egg matching: naturally parasitized cuckoo eggs were more similar to host eggs as perceived by humans and as measured by spectrophotometry. Our results suggest a hitherto overlooked step in cuckoo,host evolutionary arms races, and have nontrivial implications for the common experimental practice of artificially parasitizing clutches. [source]