Host Immune Defences (host + immune_defence)

Distribution by Scientific Domains


Selected Abstracts


Seasonality and the dynamics of infectious diseases

ECOLOGY LETTERS, Issue 4 2006
Sonia Altizer
Abstract Seasonal variations in temperature, rainfall and resource availability are ubiquitous and can exert strong pressures on population dynamics. Infectious diseases provide some of the best-studied examples of the role of seasonality in shaping population fluctuations. In this paper, we review examples from human and wildlife disease systems to illustrate the challenges inherent in understanding the mechanisms and impacts of seasonal environmental drivers. Empirical evidence points to several biologically distinct mechanisms by which seasonality can impact host,pathogen interactions, including seasonal changes in host social behaviour and contact rates, variation in encounters with infective stages in the environment, annual pulses of host births and deaths and changes in host immune defences. Mathematical models and field observations show that the strength and mechanisms of seasonality can alter the spread and persistence of infectious diseases, and that population-level responses can range from simple annual cycles to more complex multiyear fluctuations. From an applied perspective, understanding the timing and causes of seasonality offers important insights into how parasite,host systems operate, how and when parasite control measures should be applied, and how disease risks will respond to anthropogenic climate change and altered patterns of seasonality. Finally, by focusing on well-studied examples of infectious diseases, we hope to highlight general insights that are relevant to other ecological interactions. [source]


Innate immunity to mycobacteria: vitamin D and autophagy

CELLULAR MICROBIOLOGY, Issue 8 2010
Eun-Kyeong Jo
Summary Autophagy is an ancient mechanism of protein degradation and a novel antimicrobial strategy. With respect to host defences against mycobacteria, autophagy plays a crucial role in antimycobacterial resistance, and contributes to immune surveillance of intracellular pathogens and vaccine efficacy. Vitamin D3 contributes to host immune responses against Mycobacterium tuberculosis through LL-37/hCAP-18, which is the only cathelicidin identified to date in humans. In this review, we discuss recent advances in our understanding of host immune strategies against mycobacteria, including vitamin D-mediated innate immunity and autophagy activation. This review also addresses our current understanding regarding the autophagy connection to principal innate machinery, such as ubiquitin- or inflammasome-involved pathways. Integrated dialog between autophagy and innate immunity may contribute to adequate host immune defences against mycobacterial infection. [source]


Streptococcus pyogenes induces oncosis in macrophages through the activation of an inflammatory programmed cell death pathway

CELLULAR MICROBIOLOGY, Issue 1 2009
Oliver Goldmann
Summary Macrophages are crucial components of the host defence against Streptococcus pyogenes. Here, we demonstrate the ability of S. pyogenes to kill macrophages through the activation of an inflammatory programmed cell death pathway. Macrophages exposed to S. pyogenes exhibited extensive cytoplasmic vacuolization, cellular and organelle swelling and rupture of the plasma membrane typical of oncosis. The cytotoxic effect of S. pyogenes on macrophages is mediated by the streptococcal cytolysins streptolysin S and streptolysin O and does not require bacterial internalization. S. pyogenes -induced death of macrophages was not affected by the addition of osmoprotectant, implicating the activation of an orchestrated cell death pathway rather than a simple osmotic lysis. This programme cell death pathway involves the loss of mitochondria transmembrane potential (,,m) and was inhibited by the addition of exogenous glycine, which has been shown to prevent necrotic cell death by blocking the opening of death channels in the plasma membrane. The production of reactive oxygen species and activation of calpains were identified as mediators of the cell death process. We conclude that activation of the inflammatory programmed cell death pathway in macrophages could constitute an important pathogenic mechanism by which S. pyogenes evades host immune defences and causes disease. [source]


Evolutionary origin of Venturia canescens virus-like particles ,

ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 3 2006
Annette Reineke
Abstract Insect host-parasitoid interactions provide fascinating examples of evolutionary adaptations in which the parasitoid employs a variety of measures and countermeasures to overcome the immune responses of its host. Maternal factors introduced by the female wasps during egg deposition play an important role in interfering with cellular and humoral components of the host's immune defence. Some of these components actively suppress host immune components and some are believed to confer protection for the developing endoparasitoid by rather passive means. The Venturia canescens/Ephestia kuehniella parasitoid-host system is unique among other systems in that the cellular defence capacity of the host remains virtually intact after parasitization. This system raises some important questions that are discussed in this mini-review: If immune protection of the egg and the emerging larva is achieved by surface properties comprising glycoproteins and virus-like particles (VLPs) produced by the female wasp, why is the prophenoloxidase activating cascade blocked in parasitized caterpillars? Another question is the evolutionary origin of these particles, given that the functional role and structural features of V. canescens VLP proteins are more related to cellular proteins than to viruses. Arch. Insect Biochem. Physiol. 61:123,133, 2006. © 2006 Wiley-Liss, Inc. [source]