Home About us Contact | |||
Host Choice (host + choice)
Selected AbstractsInconsistent use of host plants by the Alaskan swallowtail butterfly: adult preference experiments suggest labile oviposition strategyECOLOGICAL ENTOMOLOGY, Issue 2 2007SHANNON M. MURPHY Abstract 1.,The Alaskan swallowtail butterfly (Papilio machaon aliaska) uses three unrelated plant species as hosts: Cnidium cnidiifolium (Apiaceae), Artemisia arctica (Asteraceae), and Petasites frigidus (Asteraceae). The research presented here investigated whether there are any consistent patterns in host choice by P. m. aliaska females. 2.,The first two experiments were designed to test if P. m. aliaska host preference is constant or if it changes from day to day. If host preference is labile, the experiments were designed to also test whether a female's diet breadth narrows or expands over time. 3.,The third experiment tested the host preferences of female offspring from several wild-caught P. m. aliaska females. If P. m. aliaska individuals are specialised in their host use, then all of the offspring from a single female would likely prefer the same host-plant species. This experiment was also designed to test the Hopkins' host selection principle; does the food plant on which a female is reared as a larva influence her future choices when she is searching for host plants for her own offspring? 4.,The results from all of these experiments indicate that P. m. aliaska females vary greatly in their oviposition behaviour and in their preferences for the three host plants. Most populations appear to consist of generalists with labile oviposition behaviour. There is no evidence to support the Hopkins' host selection principle. 5.,It is suggested that the generalised selection of host plants by P. m. aliaska females may be a ,bet-hedging' strategy and that this strategy may maximise reproductive fitness in an unpredictable environment. [source] Host plants and butterfly biology.ECOLOGICAL ENTOMOLOGY, Issue 1 2004Do host-plant strategies drive butterfly status? Abstract., 1.,To determine whether rarity and decline is linked to organism ecology, associations have been examined between butterfly larval host-plant competitive, stress-tolerant, ruderal (C-S-R) strategies and butterfly biology. 2.,Associations have been sought between mean C-S-R scores for larval host plants with butterfly life history, morphology and physiology variables, resource use, population attributes, geography, and conservation status. Comparisons are carried out across species and controlled for phylogenetic patterning. 3.,Butterfly biology is linked to host-plant strategies. An increasing tendency of a butterfly's host plants to a particular strategy biases that butterfly species to functionally linked life-history attributes and resource breadth and type. In turn, population attributes and geography are significantly and substantially affected by host choice and the strategies of these host plants. 4.,The greatest contrast is between butterfly species whose host plants are labelled C and R strategists and those whose host plants are labelled S strategists. Increasingly high host-plant C and R strategy scores bias butterflies to rapid development, short early stages, multivoltinism, long flight periods, early seasonal emergence, higher mobility, polyphagy, wide resource availability and biotope occupancy, open, areally expansive, patchy population structures, denser distributions, wider geographical ranges, resistance to range retractions as well as to increasing rarity in the face of environmental changes. Increasing host-plant S strategy scores have reversed tendencies, biasing those butterfly species to extended development times, fewer broods, short flight periods, smaller wing expanse and lower mobility, monophagy, restricted resource exploitation and biotope occupancy, closed, areally limited populations with typical metapopulation structures, sparse distributions, and limited geographical ranges, range retractions, and increased rarity. 5.,Species with S strategy host plants are species vulnerable to current environmental changes and species of conservation concern. [source] Do exotic generalist predators alter host plant preference of a native willow beetle?AGRICULTURAL AND FOREST ENTOMOLOGY, Issue 2 2009Dong H. Cha Abstract 1,Selection can favour herbivores that choose host plants benefitting their offspring either by enhancing growth rates or by increasing larval defences against native predators. For exotic predator species that feed on herbivores, their success with invading new habitats may depend upon overcoming defences used by native prey. Whether exotic predators can alter herbivore host choice has remained unexamined. Therefore, we compared the efficacy of larval defence by Chrysomela knabi (a native beetle species) that had fed on two native willow hosts: Salix sericea (a phenolic glycoside (PG)-rich species) and Salix eriocephala (a PG-poor species), when attacked by exotic generalist predators. In addition, the preference and performance of C. knabi on S. sericea and S. eriocephala was examined. 2,Chrysomela knabi preferred and performed better on S. sericea. In a common garden, adult C. knabi were nine-fold more common and oviposited five-fold more frequently on S. sericea than on S. eriocephala. In the laboratory, adult feeding preference on leaf discs and survival rates of larvae were both greater on S. sericea, and time to pupation was shorter. 3,Chrysomela knabi larvae produced significantly more salicylaldehyde when fed S. sericea leaves than when fed S. eriocephala leaves. Additionally, those larvae with greater salicylaldehyde had reduced predation by two exotic generalist predators, Harmonia axyridis larvae and juvenile Tenodera aridifolia sinensis. 4,The results obtained in the present study suggest that selection favoured the preference of C. knabi for PG-rich willow plants because larvae grew and survived better and that selection by common exotic generalist predators would reinforce this preference. [source] Host specificity, phenotype matching and the evolution of reproductive isolation in a coevolved plant,pollinator mutualismMOLECULAR ECOLOGY, Issue 24 2009ANNA G. HIMLER Coevolutionary interactions between plants and their associated pollinators and seed dispersers are thought to have promoted the diversification of flowering plants (Raven 1977; Regal 1977; Stebbins 1981). The actual mechanisms by which pollinators could drive species diversification in plants are not fully understood. However, it is thought that pollinator host specialization can influence the evolution of reproductive isolation among plant populations because the pollinator's choice of host is what determines patterns of gene flow in its host plant, and host choice may also have important consequences on pollinator and host fitness (Grant 1949; Bawa 1992). In this issue of Molecular Ecology, Smith et al. (2009) present a very interesting study that addresses how host specialization affects pollinator fitness and patterns of gene flow in a plant host. Several aspects of this study match elements of a seminal mathematical model of plant,pollinator codivergence (Kiester et al. 1984) suggesting that reciprocal selection for matched plant and pollinator reproductive traits may lead to speciation in the host and its pollinator when there is strong host specialization and a pattern of geographic subdivision. Smith et al.'s study represents an important step to fill the gap in our understanding of how reciprocal selection may lead to speciation in coevolved plant,pollinator mutualisms. [source] Host specificity and reproductive success of yucca moths (Tegeticula spp.MOLECULAR ECOLOGY, Issue 24 2009Lepidoptera: Prodoxidae) mirror patterns of gene flow between host plant varieties of the Joshua tree (Yucca brevifolia: Agavaceae) Abstract Coevolution between flowering plants and their pollinators is thought to have generated much of the diversity of life on Earth, but the population processes that may have produced these macroevolutionary patterns remain unclear. Mathematical models of coevolution in obligate pollination mutualisms suggest that phenotype matching between plants and their pollinators can generate reproductive isolation. Here, we test this hypothesis using a natural experiment that examines the role of natural selection on phenotype matching between yuccas and yucca moths (Tegeticula spp.) in mediating reproductive isolation between two varieties of Joshua tree (Yucca brevifolia var. brevifolia and Y. brevifolia var. jaegeriana). Using passive monitoring techniques, DNA barcoding, microsatellite DNA genotyping, and sibship reconstruction, we track host specificity and the fitness consequences of host choice in a zone of sympatry. We show that the two moth species differ in their degree of host specificity and that oviposition on a foreign host plant results in the production of fewer offspring. This difference in host specificity between the two moth species mirrors patterns of chloroplast introgression from west to east between host varieties, suggesting that natural selection acting on pollinator phenotypes mediates gene flow and reproductive isolation between Joshua-tree varieties. [source] Superparasitism in gregarious hymenopteran parasitoids: ecological, behavioural and physiological perspectivesPHYSIOLOGICAL ENTOMOLOGY, Issue 3 2007SILVIA DORN Abstract Superparasitism in gregarious wasps occurs with the deposition of a clutch of eggs by a female into a host already parasitized by itself or a conspecific female. This review synthesizes and interprets the available results in the literature reported from field studies, and from behavioural and physiological investigations. To study superparasitism at the ecosystem level, methodological issues have to be solved to determine threshold values beyond which multiple offspring can be indisputably classified as originating from superparasitism. This life strategy is then discussed from the parasitoid's perspective, considering time and egg limitation, host discrimination, clutch size, offspring body size and sex ratio, as well as development time and survival rate of offspring, with special emphasis on physiological facilitation and constraints. Then, superparasitism in gregarious species is evaluated from the host's angle, addressing host survivorship and development, host food consumption and growth. Although superparasitism may be beneficial for either the first or the superparasitizing female, depending on the system, it is detrimental for both of them under conditions of extreme superparasitism. Recent methodological and experimental advances encourage further studies on the adaptive host choice under field and laboratory conditions, as well as on mechanisms underlying success of the first or the superparasitizing female and their progeny. [source] Divergent host plant adaptation drives the evolution of sexual isolation in the grasshopper Hesperotettix viridis (Orthoptera: Acrididae) in the absence of reinforcementBIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 4 2010TONY GRACE Early stages of lineage divergence in insect herbivores are often related to shifts in host plant use and divergence in mating capabilities, which may lead to sexual isolation of populations of herbivorous insects. We examined host preferences, degree of differentiation in mate choice, and divergence in cuticular morphology using near-infrared spectroscopy in the grasshopper Hesperotettix viridis aiming to understand lineage divergence. In Kansas (USA), H. viridis is an oligophagous species feeding on Gutierrezia and Solidago host species. To identify incipient mechanisms of lineage divergence and isolation, we compared host choice, mate choice, and phenotypic divergence among natural grasshopper populations in zones of contact with populations encountering only one of the host species. A significant host-based preference from the two host groups was detected in host-paired feeding preference studies. No-choice mate selection experiments revealed a preference for individuals collected from the same host species independent of geographic location, and little mating was observed between individuals collected from different host species. Female mate choice tests between males from the two host species resulted in 100% fidelity with respect to host use. Significant differentiation in colour and cuticular composition of individuals from different host plants was observed, which correlated positively with host choice and mate choice. No evidence for reinforcement in the zone of contact was detected, suggesting that divergent selection for host plant use promotes sexual isolation in this species. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100, 866,878. [source] |