Home About us Contact | |||
Host Behaviour (host + behaviour)
Selected AbstractsHost behaviour and exposure risk in an insect,pathogen interactionJOURNAL OF ANIMAL ECOLOGY, Issue 4 2010Benjamin J. Parker Summary 1.,Studies of variability in host resistance to disease generally emphasize variability in susceptibility given exposure, neglecting the possibility that hosts may vary in behaviours that affect the risk of exposure. 2.,In many insects, horizontal transmission of baculoviruses occurs when larvae consume foliage contaminated by the cadavers of virus-infected conspecific larvae; so, host behaviour may have a strong effect on the risk of infection. 3.,We studied variability in the behaviour of gypsy moth (Lymantria dispar) larvae, which are able to detect and avoid virus-contaminated foliage. 4.,Our results show that detection ability can be affected by the family line that larvae originate from, even at some distance from a virus-infected cadaver, and suggest that cadaver-detection ability may be heritable. 5.,There is thus the potential for natural selection to act on cadaver-detection ability, and thereby to affect the dynamics of pathogen-driven cycles in gypsy moth populations. 6. We argue that host behaviour is a neglected component in studies of variability in disease resistance. [source] The spatial distribution of badgers, setts and latrines: the risk for intra-specific and badger-livestock disease transmissionECOGRAPHY, Issue 4 2008Monika Böhm The spatial distribution of wildlife hosts and the associated environmental distribution of their excretory products are important factors associated with the risk of disease transmission between wildlife and livestock. At a landscape scale, heterogeneous distribution of a wildlife host will create regional hot spots for disease risk, while at the farm level, distributional patterns of wildlife excretory products as well as habitat use are of primary importance to the assessment of disease risk to livestock. In the UK, badgers have been implicated in the transmission of bovine tuberculosis to cattle. In this study, we focus on the spatial and social organization and habitat use of badgers as well as the distributions of their excretions at latrine and sett sites to assess intra- and inter-species (badger,cattle) disease risk. Across the study site, badger latrines and setts were found in prominent clusters, at distances of up to 250 and 200 m respectively. This was partly due to small-scale clustering of latrines around sett sites, so that disease risk may be higher within the vicinity of setts. The clustered distribution suggests that sites of high risk for TB transmission may be localised within farms. Exclusion of cattle from the few sett and latrine sites within their grazing pasture is therefore likely to provide an effective way of reducing the risk of disease transmission. We also found evidence of social sub-division within badger social groups based on differences in the use of main and outlier setts. This may contribute to localised clusters of infection within the badger population, resulting in heterogeneous patterns of environmental disease risk to the wider host community. A greater understanding of variation in host behaviour and its implications for patterns of disease will allow the development of more targeted and effective management strategies for wildlife disease in group-living hosts. [source] Embryonic striatal grafts restore bi-directional synaptic plasticity in a rodent model of Huntington's diseaseEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2009David Mazzocchi-Jones Abstract Embryonic striatal grafts integrate with the host striatal circuitry, forming anatomically appropriate connections capable of influencing host behaviour. In addition, striatal grafts can influence host behaviour via a variety of non-specific, trophic and pharmacological mechanisms; however, direct evidence that recovery is dependent on circuit reconstruction is lacking. Recent studies suggest that striatal grafts alleviate simple motor deficits, and also that learning of complex motor skills and habits can also be restored. However, although the data suggest that such ,re-learning' requires integration of the graft into the host striatal circuitry, little evidence exists to demonstrate that such integration includes functional synaptic connections. Here we demonstrate that embryonic striatal grafts form functional connections with the host striatal circuitry, capable of restoring stable synaptic transmission, within an excitotoxic lesion model of Huntington's disease. Furthermore, such ,functional integration' of the striatal graft enables the expression of host,graft bi-directional synaptic plasticity, similar to the normal cortico-striatal circuit. These results indicate that striatal grafts express synaptic correlates of learning, and thereby provide direct evidence of functional neuronal circuit repair, an essential component of ,functional integration'. [source] Behavioural responses to ectoparasites: time-budget adjustments and what matters to Blue Tits Parus caeruleus infested by fleasIBIS, Issue 3 2002Frédéric Tripet Blue Tit nests are often heavily infested by fleas, which feed on the incubating female and the nestlings. Depending on habitat quality, the drawing of blood by fleas reduces offspring quality, or it is compensated by an increase in food provisioning by the adults and may reduce their future reproduction. Given these fitness costs, tits are expected to have evolved behavioural responses enabling them to remove, destroy or minimize the contact with fleas. To identify these traits, we video-recorded the changes in frequency and duration of the hosts' potential anti-flea behavioural defences in nests experimentally infested with low and high flea densities. We also investigated whether flea load affected the number of male feeds delivered to incubating females, and whether the parents increased their rate of food provisioning to the nestlings equally at high flea density. Flea density significantly affected the nest sanitation and sleeping behaviour of Blue Tit females but had no significant effect on grooming. Female Blue Tits increased the frequency but decreased the duration of bouts of these behavioural traits, and hence their time-budgets, based on per hour duration of behaviour, were not significantly affected by flea density. High flea density reduced nestling weight at the early nestling stage but these costs were fully compensated by an increase in female feeding effort. Males did not increase their frequency of food provisioning to incubating females nor to nestlings in heavily infested nests. The results are discussed in the light of parasite-mediated selection on host behaviour and the reciprocal host selection on flea life-history and behavioural traits. [source] Trypanosoma brucei brucei induces alteration in the head proteome of the tsetse fly vector Glossina palpalis gambiensisINSECT MOLECULAR BIOLOGY, Issue 6 2007T. Lefèvre Abstract Parasitic manipulations of host behaviour are known from a wide range of host,parasite associations. However, the understanding of these phenomena is far from complete and detailed investigation of their proximate causes is needed. Many studies report behavioural modifications, such as altered feeding rates in tsetse fly (Glossina) infected with the mature transmissible stage (i.e. metacyclic) of the trypanosomes. Here, bidimensional (2D) gel electrophoresis and mass spectrometry were employed to analyse and compare the head proteome between four Glossina palpalis gambiensis categories (uninfected, refractory, mature infection, immature infection). Twenty-four protein spots specifically present or absent in the head of metacyclic-infected flies were observed. These protein spots were subsequently identified and functionally classified as glycolitic, neurotransmiter synthesis, signalling, molecular chaperone and transcriptional regulation proteins. Our results indicate altered energy metabolism in the head of metacyclic-infected tsetse flies. Some of the proteins identified, such as casein kinase 2 and jun kinase have previously been shown to play critical roles in apoptosis in insect neurones. In addition, we found two pyridoxal-dependent decarboxylases (dopa decarboxylase and alpha methyldopa hypersensitive protein), suggesting a modification of serotonin and/or dopamine in the brain of metacyclic-infected tsetse flies. Our data pave the way for future investigation of the alteration of the glossina central nervous system during infection by trypanosomes. [source] Host behaviour and exposure risk in an insect,pathogen interactionJOURNAL OF ANIMAL ECOLOGY, Issue 4 2010Benjamin J. Parker Summary 1.,Studies of variability in host resistance to disease generally emphasize variability in susceptibility given exposure, neglecting the possibility that hosts may vary in behaviours that affect the risk of exposure. 2.,In many insects, horizontal transmission of baculoviruses occurs when larvae consume foliage contaminated by the cadavers of virus-infected conspecific larvae; so, host behaviour may have a strong effect on the risk of infection. 3.,We studied variability in the behaviour of gypsy moth (Lymantria dispar) larvae, which are able to detect and avoid virus-contaminated foliage. 4.,Our results show that detection ability can be affected by the family line that larvae originate from, even at some distance from a virus-infected cadaver, and suggest that cadaver-detection ability may be heritable. 5.,There is thus the potential for natural selection to act on cadaver-detection ability, and thereby to affect the dynamics of pathogen-driven cycles in gypsy moth populations. 6. We argue that host behaviour is a neglected component in studies of variability in disease resistance. [source] Sexually transmitted diseases of insects: distribution, evolution, ecology and host behaviourBIOLOGICAL REVIEWS, Issue 3 2004Robert J. Knell ABSTRACT Sexually transmitted diseases (STDs) of insects are known from the mites, nematodes, fungi, protists and viruses. In total 73 species of parasite and pathogen from approximately 182 species of host have been reported. Whereas nearly all vertebrate STDs are viruses or bacteria, the majority of insect STDs are multicellular ectoparasites, protistans or fungi. Insect STDs display a range of transmission modes, with, pure'sexual transmission only described from ectoparasites, all of which are mites, fungi or nematodes, whereas the microparasitic endo-parasites tend to show vertical as well as sexual transmission. The distribution of STDs within taxa of insect hosts appears to be related to the life histories of the hosts. In particular, STDs will not be able to persist if host adult generations do not overlap unless they are also transmitted by some alternative route. This explains the observation that the Coleoptera seem to suffer from more STDs than other insect orders, since they tend to diapause as adults and are therefore more likely to have overlapping generations of adults in temperate regions. STDs of insects are often highly pathogenic, and are frequently responsible for sterilizing their hosts, a feature which is also found in mammalian STDs. This, combined with high prevalences indicates that STDs can be important in the evolution and ecology of their hosts. Although attempts to demonstrate mate choice for unin-fected partners have so far failed it is likely that STDs have other effects on host mating behaviour, and there is evidence from a few systems that they might manipulate their hosts to cause them to mate more frequently. STDs may also play a part in sexual conflict, with males in some systems possibly gaining a selective advantage from transmitting certain STDs to females. STDs may well be important factors in host population dynamics, and some have the potential to be useful biological control agents, but empirical studies on these subjects are lacking. [source] Ribosomal DNA sequences indicate isolated populations of Ichthyophonus hoferi in geographic sympatry in the north-eastern Pacific OceanJOURNAL OF FISH DISEASES, Issue 10 2002C D Criscione Abstract Infections of Ichthyophonus hoferi, a cosmopolitan parasite of marine fish, have recently been reported in rockfish, Sebastes spp., from the north-eastern Pacific. Because I. hoferi also infects Pacific herring, Clupea pallasi Valenciennes, and salmonids in this region, we wanted to determine if Ichthyophonus parasites from rockfishes, Pacific herring and chinook salmon, Oncorhynchus tshawytscha (Walbaum), were the same. Small subunit ribosomal deoxyribonucleic acid sequence data revealed two haplotypes that were fixed among host species in geographic sympatry, one from rockfish and the other from both Pacific herring and salmon. These isolated populations of Ichthyophonus could be part of the same species that are ecologically separated because of host behaviours, or they could be distinct species that are host specific. Dietary patterns of the hosts indicate that ecological separation among hosts is possible, but the presence of distinct species may better explain the observed Ichthyophonus haplotype association with host species. [source] |