Hormonal Stimulation (hormonal + stimulation)

Distribution by Scientific Domains


Selected Abstracts


Mechanism of malsegregations at meiosis: premature centromere separation and precocious division in female Chinese hamsters stimulated with gonadotropic hormones

CONGENITAL ANOMALIES, Issue 3 2000
Shin-ichi Sonta
ABSTRACT, Using female Chinese hamsters stimulated with pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG), we investigated the influence of hormonal stimulation upon meiotic segregation in oocytes. In 1,576 oocytes ovulated spontaneously from 197 non-treated mature females, the number (percentage) of hyperhaploid oocytes with more than 12 (12,14) chromosomes was 16 (1.0%). These cells had no extra single chromatids, but all had extra chromosomes. Single chromatids were seen in 7 (0.4%) cells with a haploid chromosome set. On the other hand, a total of 1,329 and 1,198 second meiotic (MII) oocytes from 64 mature females and 61 immature females stimulated with PMSG and hCG, respectively, were subjected to chromosomal analysis. Single chromatids were seen in 34 (2.6%) and 62 (5.2%) of these oocytes, respectively. Since these chromatids were mostly paired and the sister chromatids existed near each other in many cells, they may have separated from some chromosomes of haploid cells. Compared with the non-treated females, the frequency of cells with single chromatids was significantly greater in oocytes from both mature and immature females stimulated with PMSG and hCG. The number (percentage) of hyperhaploid cells from mature and immature PMSG-hCG-stimulated females, respectively, was 15 (1.1%) and 14 (1.2%), which was not significantly greater than that in non-treated females. Most of these cells had extra whole chromosomes but one oocyte from mature females and one from immature females had an extra single chromatid. These findings indicate that such hormonal stimulation induces premature centromere separation in MII oocytes and precocious division at anaphase I, which can be assumed by the presence of MII cells with extra single chromatids. Considering that no or less hyperhaploid MII oocytes with an extra single chromatid were seen in oocytes from spontaneous ovulation and from artificial ovulation on hormonal stimulation, these findings suggest that the major mechanism of malsegregations at first meiotic (MI) division is not a precocious division but rather, errors such as nondisjunction of homologous chromosomes (dyads). [source]


Milk consumption: aggravating factor of acne and promoter of chronic diseases of Western societies

JOURNAL DER DEUTSCHEN DERMATOLOGISCHEN GESELLSCHAFT, Issue 4 2009
Bodo Melnik
Summary Consumption of cow's milk and cow's milk protein result in changes of the hormonal axis of insulin, growth hormone and insulin-like growth factor-1(IGF-1) in humans. Milk consumption raises IGF-1 serum levels in the perinatal period, adolescence and adulthood. During puberty with the physiological onset of increased secretion of growth hormone, IGF-1 serum levels increase and are further enhanced by milk consumption. IGF-1 is a potent mitogen; after binding to its receptor in various tissues, it induces cell proliferation and inhibits apoptosis. Keratinocytes and sebocytes, as well as the androgen-synthesizing adrenals and gonads, are stimulated by IGF-1. The epidemic incidence of adolescent acne in Western milk-consuming societies can be explained by the increased insulin- and IGF-1-stimulation of sebaceous glands mediated by milk consumption. Acne can be regarded as a model for chronic Western diseases with pathologically increased IGF-1-stimulation. Many other organs, such as the thymus, bones, all glands, and vascular smooth muscle cells as well as neurons are subject to this abnormally increased hormonal stimulation. The milk-induced change of the IGF-1-axis most likely contributes to the development of fetal macrosomia, induction of atopy, accelerated linear growth, atherosclerosis, carcinogenesis and neurodegenerative diseases. Observations of molecular biology are supported by epidemiologic data and unmask milk consumption as a promoter of chronic diseases of Western societies. [source]


PPAR,1 synthesis and adipogenesis in C3H10T1/2 cells depends on S-phase progression, but does not require mitotic clonal expansion

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2004
Young C. Cho
Abstract Adipogenesis is typically stimulated in mouse embryo fibroblast (MEF) lines by a standard hormonal combination of insulin (I), dexamethasone (D), and methylisobutylxanthine (M), administered with a fresh serum renewal. In C3H10T1/2 (10T1/2) cells, peroxisome proliferator-activated receptor ,1 (PPAR,1) expression, an early phase key adipogenic regulator, is optimal after 36 h of IDM stimulation. Although previous studies provide evidence that mitotic clonal expansion of 3T3-L1 cells is essential for adipogenesis, we show, here, that 10T1/2 cells do not require mitotic clonal expansion, but depend on cell cycle progression through S-phase to commit to adipocyte differentiation. Exclusion of two major mitogenic stimuli (DM without insulin and fresh serum renewal) from standard IDM protocol removed mitotic clonal expansion, but sustained equivalent PPAR,1 synthesis and lipogenesis. Different S-phase inhibitors (aphidicolin, hydroxyurea, l -mimosine, and roscovitin) each arrested cells in S-phase, under hormonal stimulation, and completely blocked PPAR,1 synthesis and lipogenesis. However, G2/M inhibitors effected G2/M accumulation of IDM stimulated cells and prevented mitosis, but fully sustained PPAR,1 synthesis and lipogenesis. DM stimulation with or without fresh serum renewal elevated DNA synthesis in a proportion of cells (measured by BrdU labeling) and accumulation of cell cycle progression in G2/M-phase without complete mitosis. By contrast, standard IDM treatments with fresh serum renewal caused elevated DNA synthesis and mitotic clonal expansion while achieved equivalent level of adipogenesis. At most, one-half of the 10T1/2 mixed cell population differentiated to mature adipocytes, even when clonally isolated. PPAR, was exclusively expressed in the cells that contained lipid droplets. IDM stimulated comparable PPAR,1 synthesis and lipogenesis in isolated cells at low cell density (LD) culture, but in about half of the cells and with sensitivity to G1/S, but not G2/M inhibitors. Importantly, growth arrest occurred in all differentiating cells, while continuous mitotic clonal expansion occurred in non-differentiating cells. Irrespective of confluence level, 10T1/2 cells differentiate after progression through S-phase, where adipogenic commitment induced by IDM stimulation is a prerequisite for PPAR, synthesis and subsequent adipocyte differentiation. © 2003 Wiley-Liss, Inc. [source]


Genistein affects androgen-responsive genes through both androgen- and estrogen-induced signaling pathways,

MOLECULAR CARCINOGENESIS, Issue 1 2006
Yoko Takahashi
Abstract This study examined the mechanisms by which the prostate cancer chemopreventive agent genistein modulates gene expression in LNCaP human prostate cancer cells. Expression of androgen- and estrogen-regulated genes was measured in LNCaP cells cultured in the presence or absence of hormonal stimulation and the presence or absence of genistein. Genistein strongly suppressed basal expression of androgen-responsive gene (ARG) mRNAs, including prostate-specific antigen (PSA) and Ste20-related proline-alanine-rich kinase (SPAK). However, genistein had little or no effect on basal expression of two other ARGs, ,2 -microglobulin (B2M) or selenoprotein P (SEPP1). Culturing LNCaP cells in the presence of the synthetic androgen R1881-induced increases in PSA, SPAK, B2M, and SEPP1 mRNA levels. The R1881-induced expression of these genes was uniformly blocked by genistein. For PSA and SPAK, genistein also blocked or downregulated 17,-estradiol-induced increases in mRNA expression. These results indicate that genistein selectively alters expression of ARG mRNAs in LNCaP cells through modulation of both androgen- and estrogen-induced signaling pathways. Published 2005 Wiley-Liss, Inc. [source]


Ovum Pick-up in Cycling and Lactating Postpartum Swamp Buffaloes (Bubalis bubalis)

REPRODUCTION IN DOMESTIC ANIMALS, Issue 2 2005
A Promdireg
Contents The objective of this study was to evaluate the efficiency of Ovum Pick Up (OPU) in cycling (n = 5) and lactating, postpartum, swamp buffaloes (n = 6) with and without gonadotropin stimulation. The OPU was performed every two weeks in all groups of animals, for a total of six sessions. Thirty collections were performed in five cycling buffaloes and 36 collections in six lactating postpartum buffaloes. Buffaloes that received hormonal stimulation were given a total of 400 mg, follicle stimulating hormone (FSH), administered twice daily over 3 days in decreasing doses, together with 100 ,g of GnRH, 24 h after the last FSH injection. Following a resting period of 1 month, the two groups of buffaloes, were subjected to the same OPU regimen, but without any hormonal treatment for an additional six OPU sessions. The number of aspirated follicles recorded from the hormonal stimulated, cycling animals and lactating, postpartum buffaloes was not significantly different, 7.2 ± 3.7 and 9.0 ± 3.2, respectively (p > 0.05). Recovered oocytes collected from the two groups of hormonally stimulated animals were also not statistically different: 3.7 ± 2.7 in the cycling and 5.9 ± 3.5 in the lactating postpartum group (p > 0.05). In the two groups of buffaloes not receiving hormonal stimulation, the number of aspirated follicles was not significantly different: 2.1 ± 1.4 and 1.4 ± 0.7 in cycling and lactating postpartum buffaloes respectively (p > 0.05). Recovered oocytes in the non-treated groups were also similar: 1.4 ± 1.3 vs 0.7 ± 0.8 in cycling and lactating buffaloes (p > 0.05). Among stimulated buffaloes, most aspirated follicles were small in size (,5 mm), whereas they were mostly medium and large sizes in the non-treated buffaloes. The oocyte recovery rate in both the groups, cycling and lactating postpartum, were 51.6% and 69.5% in stimulated groups and 55.0% and 53.1% in non-stimulated groups (p > 0.05). The majority of recovered oocytes were single- and multi-layered, and the number was greater in the cycling than in the lactating, postpartum buffaloes. The number and quality of recovered oocytes was similar in all groups of buffaloes whether they were received or did not receive hormonal stimulation. Moreover no difference was found in multi- and single-layered oocytes between cycling and lactating, postpartum buffaloes. In conclusion, OPU can be performed successfully in swamp buffalo in different reproductive status and FSH administration was shown to increase the number of aspirated oocytes in both cycling and lactating, postpartum buffaloes. [source]


Influence of the length of time after hormonal stimulation on selected parameters of milt of ide Leuciscus idus L.

AQUACULTURE RESEARCH, Issue 6 2010
Beata Irena Cejko
Abstract Milt of the Leuciscus idus L. was collected from five experimental groups, and selected parameters of its quality were analysed for 36 h (group II), 60 h (group III), 84 h (group IV) and 108 h (group V), respectively, after hormonal stimulation with Ovopel (1 granule kg,1 of body weight). The control (group I) fish were not subjected to hormonal stimulation. The highest milt volume was obtained from the fish in group IV (0.70 ± 0.55 mL), where the largest volume of milt expressed per kilogram was also obtained (3.03 ± 1.94 mL kg,1). Significant differences were also found in milt volumes obtained between group I and groups III (P<0.01) and IV (P<0.05). The highest percentage of motile spermatozoa was found in the milt of group IV (59%); significant differences were found between group I and groups II (P<0.01) and III (P<0.001). The value of osmotic pressure of seminal plasma was the highest in group IV (203.19 ± 37.63 mOsm kg,1), and the lowest in group I (118.31 ± 41.13 mOsm kg,1). Parameters determining milt quality and quantity indicate that the period of 60,84 h after hormonal stimulation with Ovopel is optimal for obtaining milt from ide. [source]