Hormonal Regulation (hormonal + regulation)

Distribution by Scientific Domains


Selected Abstracts


Region-Specific Expression and Hormonal Regulation of the First Exon Variants of Rat Prolactin Receptor mRNA in Rat Brain and Anterior Pituitary Gland

JOURNAL OF NEUROENDOCRINOLOGY, Issue 8 2007
H. Nogami
Recent studies have revealed the occurrence of five first exon variants of the rat prolactin receptor mRNA, suggesting that multiple promoters direct prolactin receptor transcription in response to different regulatory factors. In the present study, regional expression of these first exon variants, as well as two prolactin receptor subtypes generated by alternative splicing, was examined in the brains and anterior pituitary glands of female rats. Expression of the long-form was detected in the choroid plexus, hypothalamus, hippocampus, cerebral cortex and anterior pituitary gland, whereas the short form was detected only in the choroid plexus. E1-3 mRNA, a first exon variant, was detected in the choroid plexus, hypothalamus, and anterior pituitary gland, whereas E1-4 was detected only in the choroid plexus. Other variants were not detectable by the polymerase chain reaction protocol employed in this study. Ovariectomy increased the short form in the choroid plexus and the E1-3 expression in the choroid plexus and pituitary gland, but changes in the long-form and E1-4 expression were minimal. Replacement of oestrogens and prolactin suggest that oestrogens down-regulate E1-3 expression in the choroid plexus and pituitary gland, and that the negative effect of oestrogen is mediated by prolactin in the pituitary gland. The present results revealed the region-specific promoter usage in prolactin receptor mRNA transcription, as well as the involvement of oestrogens in the regulation of E1-3 mRNA expression in the brain and pituitary gland. [source]


Cellular and Hormonal Regulation of Pigmentation in Human Ocular Melanocytes

PIGMENT CELL & MELANOMA RESEARCH, Issue 4 2001
Linda C. Smith-Thomas
The purpose of this study was to examine some of the factors that may be relevant to regulating pigmentation in the human eye, specifically whether choroidal and iridial melanocytes are sensitive to regulation by epithelial and stromal cells and ,-melanocyte stimulating hormone (,-MSH). Human choroidal and iridial melanocytes were established in culture and co-cultured with epithelial cells and stromal cells derived both from skin and from eye in order to determine their influence on choroidal and iridial melanocyte dopa oxidase activity. In all cases, co-culture of melanocytes with either epithelial cells or fibroblasts led to an increase in dopa oxidase activity during 5 days of co-culture. The extent of the increase ranged from 60% (non-significant) to as much as 185% when both fibroblasts and keratinocytes were present. The optimal ratio of fibroblasts to melanocytes was 1:10 (for dermal fibroblasts) or 1:2 (for iridial fibroblasts) and 1:1 for all epithelial cells to melanocytes. Both choroidal (three out of three cultures) and iridial (two out of three cultures) melanocytes showed increases in dopa oxidase activity to ,-MSH when cultured in Green's media but the same cells cultured in MCDB153 were unresponsive to ,-MSH. These in vitro studies suggest that ocular melanocytes have the capacity to be influenced by adjacent epithelial and stromal cells with respect to pigmentation. [source]


Hormonal regulation of multiple promoters of the rat mitochondrial glycerol-3-phosphate dehydrogenase gene

FEBS JOURNAL, Issue 14 2001
Identification of a complex hormone-response element in the ubiquitous promoter B
Rat mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH) is regulated by multiple promoters in a tissue-specific manner. Here, we demonstrate that thyroid hormone (3,5,3,-tri-iodo- l -thyronine) and steroid hormone but not the peroxisome proliferator clofibrate and retinoic acid stimulate the activation of the ubiquitous promoter B in a receptor-dependent manner, whereas the more tissue-restricted promoters A and C are not inducible by these hormones. Thyroid hormone action is mediated by a direct repeat +4 (DR+4) hormone-response element as identified by deletion and mutation analyses of promoter B in transient transfection analyses. The DR+4 element was able to bind to an in vitro translated thyroid hormone receptor in band-shift and supershift experiments. The hormone-response element comaps with a recognition site for the transcription factor Sp1, suggesting complex regulation of this sequence element. Mutation of this Sp1-recognition site reduces the basal promoter B activity dramatically in HepG2 and HEK293 cells in transient transfection and abolishes the binding of Sp1 in band-shift experiments. As demonstrated by Western-blot experiments, administration of tri-iodothyronine to euthyroid rats increases hepatic mGPDH protein concentrations in vivo. As it has recently been reported that human mGPDH promoter B is not regulated by tri-iodothyronine, this is the first example of a differentially tri-iodothyronine-regulated orthologous gene promoter in man and rat. [source]


Hormonal regulation of temperature-induced growth in Arabidopsis

THE PLANT JOURNAL, Issue 4 2009
Jon A. Stavang
Summary Successful plant survival depends upon the proper integration of information from the environment with endogenous cues to regulate growth and development. We have investigated the interplay between ambient temperature and hormone action during the regulation of hypocotyl elongation, and we have found that gibberellins (GAs) and auxin are quickly and independently recruited by temperature to modulate growth rate, whereas activity of brassinosteroids (BRs) seems to be required later on. Impairment of GA biosynthesis blocked the increased elongation caused at higher temperatures, but hypocotyls of pentuple DELLA knockout mutants still reduced their response to higher temperatures when BR synthesis or auxin polar transport were blocked. The expression of several key genes involved in the biosynthesis of GAs and auxin was regulated by temperature, which indirectly resulted in coherent variations in the levels of accumulation of nuclear GFP,RGA (repressor of GA1) and in the activity of the DR5 reporter. DNA microarray and genetic analyses allowed the identification of the transcription factor PIF4 (phytochrome-interacting factor 4) as a major target in the promotion of growth at higher temperature. These results suggest that temperature regulates hypocotyl growth by individually impinging on several elements of a pre-existing network of signaling pathways involving auxin, BRs, GAs, and PIF4. [source]


AMPK-dependent hormonal regulation of whole-body energy metabolism

ACTA PHYSIOLOGICA, Issue 1 2009
N. L. Dzamko
Abstract AMP-dependent protein kinase (AMPK) is an evolutionarily conserved serine/threonine protein kinase central to the regulation of energy balance at both the cellular and whole-body levels. In its classical role as an intracellular metabolic stress-sensing kinase, AMPK switches on fatty acid oxidation and glucose uptake in muscle, while switching off hepatic gluconeogenesis. AMPK also has a broader role in metabolism through the control of appetite. Regulation of AMPK activity at the whole-body level is coordinated by a growing number of hormones and cytokines secreted from adipose tissue, skeletal muscle, pancreas and the gut including leptin, adiponectin, insulin, interluekin-6, resistin, TNF-, and ghrelin. Understanding how these secreted signalling proteins regulate AMPK activity to control fatty acid oxidation, glucose uptake, gluconeogenesis and appetite may yield therapeutic treatments for metabolic disorders such as diabetes, insulin resistance and obesity. [source]


Sex differences in and hormonal regulation of Kv1 potassium channel gene expression in the electric organ: Molecular control of a social signal

DEVELOPMENTAL NEUROBIOLOGY, Issue 5 2007
W. Preston Few
Abstract Electric fish communicate with electric organ (EO) discharges (EODs) that are sexually dimorphic, hormone-sensitive, and often individually distinct. The cells of the EO (electrocytes) of the weakly electric fish Sternopygus possess delayed rectifying K+ currents that systematically vary in their activation and deactivation kinetics, and this precise variation in K+ current kinetics helps shape sex and individual differences in the EOD. Because members of the Kv1 subfamily produce delayed rectifier currents, we cloned a number of genes in the Kv1 subfamily from the EO of Sternopygus. Using our sequences and those from genome databases, we found that in teleost fish Kv1.1 and Kv1.2 exist as duplicate pairs (Kv1.1a&b, Kv1.2a&b) whereas Kv1.3 does not. Using real-time quantitative RT-PCR, we found that Kv1.1a and Kv1.2a, but not Kv1.2b, expression in the EO is higher in high EOD frequency females (which have fast EO K+ currents) than in low EOD frequency males (which have slow EO K+ currents). Systemic treatment with dihydrotestosterone decreased Kv1.1a and Kv1.2a, but not Kv1.2b, expression in the EO, whereas treatment with human chorionic gonadotropin (hCG) increased Kv1.2a but not Kv1.1a or Kv1.2b expression in the EO. Thus, systematic variation in the ratios of Kv1 channels expressed in the EO is correlated with individual differences in and sexual dimorphism of a communication signal. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2007 [source]


Insecticides with novel modes of action: Mechanism, selectivity and cross-resistance

ENTOMOLOGICAL RESEARCH, Issue 3 2007
Isaac ISHAAYA
Abstract Efforts have been made during the past two decades to develop insecticides with selective properties that act specifically on biochemical sites present in particular insect groups, but whose properties differ from other insecticides. This approach has led to the discovery of compounds that affect the hormonal regulation of molting and developmental processes in insects; for example, ecdysone agonists, juvenile hormone mimics and chitin synthesis inhibitors. In addition, compounds that selectively interact with the insect nicotinic acetylcholine receptor, such as imidacloprid, acetamiprid and thiamethoxam, have been introduced for the control of aphids, whiteflies and other insect species. Natural products acting selectively on insect pests, such as avermectins, spinosad and azadirachtin, have been introduced for controlling selected groups of insect pests. Compounds acting on the nervous site that controls the sucking pump of aphids and whiteflies, such as pymetrozine, or respiration, such as diafenthiuron, have been introduced for controlling sucking pests. All the above compounds are important components in pest and resistance management programs. [source]


Frequent amplification and overexpression of CCND1 in male breast cancer

INTERNATIONAL JOURNAL OF CANCER, Issue 6 2004
Maarit Bärlund
Abstract Genetic events underlying the pathogenesis of breast cancer have been studied extensively and several clinically significant markers have been identified. For example, amplification and overexpression of the ERBB2 oncogene is associated with poor prognosis in breast cancer and ERBB2 serves as a target for antibody-based therapy. Current knowledge on the pathogenesis of male breast cancer (MBC) is limited. The purpose of our study was to investigate the potential relevance of a series of genes known to be amplified in female breast cancer (FBC) in a the development and pathogenesis of MBC. To this end, we applied fluorescence in situ hybridization and immunohistochemistry to the analysis of 128 breast tumors from males. Amplification of ERBB2, MYC, PPM1D and ZNF217 was detected rarely (1,2% of tumors) indicating a considerably lower amplification frequency than in FBC. CCND1 amplification was observed in 12% of cases, being in good concordance with findings from FBC. In addition, CCND1 overexpression was detected in 63% of tumors and was associated with ER positivity (p < 0.0001). Our results indicate distinct differences in the genetic basis of MBC and FBC and suggest that marked differences exist in the pathogenesis of these diseases. The lack of ERBB2 involvement was especially unexpected and implies that ERBB2 -targeted therapies are unlikely to be beneficial in MBC. Furthermore, the high frequency of hormone receptor positivity and the association between ER positivity and CCND1 overexpression supports the notion that hormonal regulation is likely to be essential for the development of MBC. © 2004 Wiley-Liss, Inc. [source]


PKC-,-dependent cytosol-to-membrane translocation of pendrin in rat thyroid PC Cl3 cells

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2008
A. Muscella
We studied the expression and the hormonal regulation of the PDS gene product, pendrin, which is, in thyrocytes, responsible for the iodide transport out of the cell. We show that PC Cl3 cells, a fully differentiated thyroid cell line, grown without TSH and insulin, express very low level of PDS mRNA; such expression is greatly increased after stimulation with insulin or TSH. 125I pre-loaded cells showed an 125I efflux accelerated in chloride-containing buffer with respect to chloride-free buffer, suggesting that this efflux is chloride dependent. By immunoblotting, pendrin was found in agonists-stimulated cells, whereas it was barely detectable in un-stimulated cells. An increase in both PDS mRNA and protein was also obtained using phorbol ester PMA, or using 8-Br-cAMP and forskolin. Stimulation with insulin (1 µg/ml; 0,40 min) provoked the cytosol-to-membrane translocation of pendrin and a decrease of intracellular I, content in 125I pre-loaded cells. Insulin- or PMA-treated cells also showed a cytosol-to-membrane translocation of PKC-, and -,. Inhibition of both PKC-, and -, activities by GF109203X blocked pendrin translocation, whilst the inhibition of PKA did not. The selective inhibition of PKC-, by rottlerin did not affect the insulin-provoked translocation of pendrin whilst it was inhibited by a PKC-, translocation inhibitor peptide and also by PKC-, downregulation using the small interfering RNA, thus indicating that such translocation was due to PKC-, activity. In conclusion, our study demonstrates that, in PC Cl3 cells, pendrin expression and localisation are regulated by insulin and influenced by a PKC-,-dependent intracellular pathway. J. Cell. Physiol. 217: 103,112, 2008. © 2008 Wiley-Liss, Inc. [source]


Na+/Mg2+ exchange is functionally coupled to the insulin receptor,

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2004
Ana Ferreira
Regulation of cellular Mg2+ levels by insulin has been shown in various tissues. However, the mechanisms for hormonal regulation of cellular Mg2+ have not been well described. We studied the effect of insulin on Na+/Mg2+ exchange in normal human cells, measuring Na+/Mg2+ exchange activity as net total Mg2+ efflux driven by an inward Na+ gradient in Mg2+ -loaded red blood cells (RBCs). Na+/Mg2+ exchange was increased significantly by the addition of 2.4 nmol/L of insulin to the flux medium (from 0.60,±,0.06 mmol/L cell,×,h to 0.75,±,0.08 mmol/L cell,×,h [P,=,0.0098, n,=,44]). A dose-response curve for the effects of insulin on the exchanger activity gave an estimated EC50 for insulin of 0.95,±,0.31 nmol/L and a Vmax of 0.86,±,0.12 mmol/L cell,×,h (n,=,7). Kinetics of the Na+/Mg2+ exchange were characterized by measuring its activity as a function of Mg2+ and Na+ concentrations. The K0.5 for cellular Mg2+ was not affected by incubation with insulin. However, the K0.5 for extracellular Na+ decreased from 69.9,±,6.3 to 40.3,±,8.4 mol/L (n,=,5, P,=,0.03) in the presence of insulin. We also studied the effect of wortmannin (WT), a PI 3-kinase inhibitor, on activity of the exchanger. WT significantly blocked the insulin-stimulated Na+/Mg2+ activity (n,=,6, P,=,0.048), with an IC50 of 0.5 nmol/L. LY294002, another PI 3-kinase inhibitor, likewise blocked the insulin-stimulated activity of the exchanger. Therefore, insulin regulates cellular Mg2+ metabolism in part via an increase in the affinity for Na+ of the Na+/Mg2+ exchange and PI 3-kinase activation, suggesting another role for the PI 3-kinase pathway in insulin-mediated cellular events. © 2003 Wiley-Liss, Inc. [source]


Interplay Between Endocannabinoids, Steroids and Cytokines in the Control of Human Reproduction

JOURNAL OF NEUROENDOCRINOLOGY, Issue 2008
N. Battista
The use of marijuana, which today is the most used recreational drug, has been demonstrated to affect adversely reproduction. Marijuana smokers, both men and women, show impaired fertility, owing to defective signalling pathways, aberrant hormonal regulation, or wrong timing during embryo implantation. Anandamide (N -arachidonoylethanolamine, AEA) and 2-arachidonoylglycerol (2-AG) mimic ,9 -tetrahydrocannabinol (THC), the psychoactive principle of Cannabis sativa, by binding to both the brain-type (CB1) and the spleen-type (CB2) cannabinoid receptors. These ,endocannabinoids' exert several actions either in the central nervous system or in peripheral tissues, and are metabolised by specific enzymes that synthesise or hydrolyse them. In this review, we shall describe the elements that constitute the endocannabinod system (ECS), in order to put in a better perspective the role of this system in the control of human fertility, both in females and males. In addition, we shall discuss the interplay between ECS, sex hormones and cytokines, which generates an endocannabinoid,hormone,cytokine array critically involved in the control of human reproduction. [source]


Regulation of Expression of Mammalian Gonadotrophin-Releasing Hormone Receptor Genes

JOURNAL OF NEUROENDOCRINOLOGY, Issue 10 2005
J. P. Hapgood
Abstract Gonadotrophin-releasing hormone (GnRH), acting via its cognate GnRH receptor (GnRHR), is the primary regulator of mammalian reproductive function, and hence GnRH analogues are extensively used in the treatment of hormone-dependent diseases, as well as for assisted reproductive techniques. In addition to its established endocrine role in gonadotrophin regulation in the pituitary, evidence is rapidly accumulating to support the expression and functional roles for two forms of GnRHR (GnRHR I and GnRHR II) in multiple and diverse extra-pituitary mammalian tissues and cells. These findings, together with findings indicating that mutations of the GnRHR are linked to the disease hypogonadotrophic hypogonadism and that GnRHRs play a direct role in neuronal migration and reproductive cancers, have presented new therapeutic targets and intensified research into the structure, function and mechanisms of regulation of expression of GnRHR genes. The present review focuses on the current knowledge on tissue-specific and hormonal regulation of transcription of mammalian GnRH receptor genes. Emerging insights, such as the discovery of diverse regulatory mechanisms in pituitary and extra-pituitary cell types, nonclassical mechanisms of steroid regulation, the use of composite elements for cell-specific expression, the increasing profile of hormones involved in regulation, the complexity of kinase pathways that target the GnRHR I gene, as well as species-differences, are highlighted. Although further research is necessary to understand the mechanisms of regulation of expression of GnRHR I and GnRHR II genes, the GnRHR is emerging as a potential target gene for facilitating cross-talk between neuroendocrine, immune and stress-response systems in multiple tissues via autocrine, paracrine and endocrine signalling. [source]


The Percentage of Pituitary Gonadotropes with Immunoreactive Oestradiol Receptors Increases in the Follicular Phase of the Ovine Oestrous Cycle

JOURNAL OF NEUROENDOCRINOLOGY, Issue 10 2001
V. A. Tobin
Abstract During the oestrous cycle, there is an alteration in gonadotrope responsiveness to gonadotropin releasing hormone (GnRH). One cellular mechanism that may be involved in these changes at the pituitary level is the hormonal regulation of oestrogen receptor (ER) expression. Using double-label immunohistochemistry, we examined the proportion of gonadotropes, lactotropes and somatotropes with immunoreactive (ir) oestrogen receptor alpha (ER,) in pituitary sections from ewes at three stages of the ovine oestrous cycle (n = 8 per group). The percentage of ER, positive cells that also stained positive for luteinizing hormone (LH) increased in the transition from the luteal phase to the follicular phase (n = 8), with no further increase at the time of oestrus (n = 8). In the pituitaries from the luteal phase sheep, only a small number (15%) of lactotropes and 4% of somatotropes were found to contain ir-ER, and there were no alterations across the oestrous cycle. When we examined pituitaries from ovariectomized (OVX) ewes treated (i.m.) with either oestradiol benzoate (50 µg) or oil vehicle for 2, 4, 6 or 16 h (n = 4 per group), there was no effect of treatment. In fact, the percentage of gonadotropes that were ER,-positive in OVX ewes was similar to that observed in the pituitaries from the follicular phase ewes, both of which display a high frequency of pulsatile GnRH secretion. We conclude that the number of gonadotropes that contain ir-ER, increases in the follicular phase of the oestrous cycle and this may enhance the responsiveness of these cells to oestrogen and GnRH. We suggest that this may be due to increased pulsatile GnRH input rather than rising oestrogen levels. [source]


Plant responses to drought and phosphorus deficiency: contribution of phytohormones in root-related processes

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 4 2005
Lutz Wittenmayer
Abstract Environmental stresses are one of the most limiting factors in agricultural productivity. A large portion of the annual crop yield is lost to pathogens (biotic stress) or the detrimental effects of abiotic-stress conditions. There are numerous reports about chemical characterization of quantitatively significant substrate fluxes in plant responses to stress factors in the root-rhizosphere system, e.g., nutrient mobilization, heavy-metal and aluminum immobilization, or establishment of plant-growth-promoting rhizobacteria (PGPR) by exudation of organic anions, phytosiderophores, or carbohydrates into the soil, respectively. The hormonal regulation of these responses is not well understood. This paper highlights this complex process, stressing the involvement of phytohormones in plant responses to drought and phosphorus deficiency as examples. Beside ethylene, abscisic acid (ABA) plays an important role in drought-stress adaptation of plants. This hormone causes morphological and chemical changes in plants, ensuring plant survival under water-limited conditions. For example, ABA induces stomata closure, reduction in leaf surface, and increase in root : shoot ratio and, thus, reduction in transpiration and increase in soil volume for water uptake. Furthermore, it supports water uptake in soil with decreasing water potential by osmotic adjustment. Suitability of hormonal parameters in the selection for improving stress resistance is discussed. Auxins, ethylene, and cytokinins are involved in morphological adaption processes to phosphorus (P) deficiency (increase in root surface, e.g., by the formation of more dense root hairs or cluster roots). Furthermore, indole-3-acetic acid increases root exudation for direct and indirect phosphorus mobilization in soil. Nevertheless, the direct use of the trait "hormone content" of a particular plant organ or tissue, for example the use of the drought-stress-induced ABA content of detached leaves in plant breeding for drought-stress-resistant crops, seems to be questionable, because this procedure does not consider the systemic principle of hormonal regulation in plants. Reaktionen von Pflanzen auf Trockenstress und Phosphormangel: Die Rolle von Phytohormonen in wurzelbezogenen Prozessen Umweltstress stellt den wesentlichsten Limitierungsfaktor für die landwirtschaftliche Produktion dar. Ein erheblicher Teil der jährlichen Ernten geht durch pathogene Organismen (biotischer Stress) oder durch die verheerende Wirkung abiotischer Stressoren verloren (v. a. Trockenstress und Nährstoffmangel). Es gibt zahlreiche Untersuchungen zur stofflichen Charakterisierung der pflanzlichen Stressreaktion an der Wurzel, z.,B. Nährstoffmobilisierung, Schadstoffimmobilisierung oder Etablierung von wachstumsfördernden Rhizobakterien durch Wurzelabscheidungen. Die hormonelle Steuerung dieser Prozesse ist bisher weniger erforscht. Der Artikel geht dieser Problematik am Beispiel von Trockenstress und Phosphormangel unter besonderer Berücksichtigung von Phytohormonen nach. Bei der Anpassung von Pflanzen an Wassermangelbedingungen spielt neben Ethylen das Phytohormon Abscisinsäure (ABA) eine wichtige Rolle. Es induziert morphologische und chemische Veränderungen in der Pflanze, die ein Überleben unter Wassermangelbedingungen ermöglichen. Beispielsweise induziert die ABA den Stomataschluss, eine Verringerung der Blattoberfläche sowie eine Erhöhung des Wurzel:Spross-Verhältnisses und bewirkt dadurch eine verringerte Transpiration und Vergrößerung des Bodenvolumens zur Erschließung von Wasservorräten. Darüber hinaus kann eine ABA-induzierte Anreicherung von osmotisch wirksamen Verbindungen zur Wasseraufnahme bei sinkendem Wasserpotential im Boden beitragen. Bei Phosphat (P)-Mangel sind vor allem Auxine, Cytokine und Ethylen an der morphologischen Anpassung der Wurzeln (Vergrößerung der Wurzeloberfläche durch verstärkte Bildung von Wurzelhaaren oder Proteoidwurzeln) beteiligt. Darüber hinaus bewirkt Indolyl-3-Essigäure eine Intensivierung der Abgabe von Wurzelabscheidungen zur direkten oder indirekten P-Mobilisierung in der Rhizosphäre. Trotzdem wird die unmittelbare Verwendung des Indikators "Hormongehalt" eines bestimmten Pflanzenorganes, beispielsweise der trockenstressinduzierte ABA-Gehalt von abgeschnittenen Blättern, für die Züchtung auf Stressresistenz als problematisch angesehen, da sie das systemische Prinzip der Hormonregulation nicht berücksichtigt. [source]


Regulation of prostaglandin synthesis in ovaries of sexually-mature zebrafish (Danio rerio)

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 11 2009
Andrea L. Lister
This study investigates the regulation of prostaglandin (PG) synthesis in the ovaries of sexually-mature zebrafish (Danio rerio). We examined the ovarian expression of genes within the arachidonic acid (AA) pathway, and the ovarian levels of 17,,20,-dihydroxy-4-pregnen-3-one (17,,20,-P), 17,-estradiol (E2), and PGF2, in spawning and nonspawning fish during the ovulatory cycle. Real-time RT-PCR analysis revealed that the expression levels of cytosolic phospholipase A2 (cpla2) and cyclooxygenases (COX)-2 (ptgs2) in ovarian fragments and in isolated full-grown follicles of spawning fish were highest at 6:00 when ovulation was expected to occur. In nonspawning fish, cpla2 expression levels declined over time while ptgs2 expression displayed the same temporal pattern as in spawning fish. Elevated levels of 17,,20,-P in the spawning fish occurred at 3:30, but there were no changes in the nonspawning fish. In other studies conducted to investigate the hormonal regulation of AA pathway genes, fish exposed via the water for 24 or 96,hr to 17,,20,-P or E2 exhibited reduced ovarian expression levels of COX-1 (ptgs1) and PG E synthase-2 (ptgsl), and E2 reduced the expression of cpla2. Injection of human chorionic gonadotropin (hCG) (100,IU) led to increased expression levels of cpla2 and ptgs2 at 2 and 18,hr post-treatment, but consistently reduced ptgs1 and ptgsl expression. In these fish, ovarian levels of 17,,20,-P were elevated at all time points and PGF2, levels in the hCG-treated group were significantly higher than the control fish at 18,hr. Collectively, these in vivo results suggest that gonadotropins and steroids are involved in the regulation of the AA pathway in ovarian follicles of zebrafish. Mol. Reprod. Dev. 76: 1064,1075, 2009. © 2009 Wiley-Liss, Inc. [source]


Rac and Rho: The Story Behind Melanocyte Dendrite Formation

PIGMENT CELL & MELANOMA RESEARCH, Issue 5 2002
Glynis Scott
Melanocyte dendrites are hormonally responsive actin and microtubule containing structures whose primary purpose is to transport melanosomes to the dendrite tip. Melanocyte dendrites have been an area of intense interest for melanocyte biologists, but it was not until recently that we began to understand the mechanisms underlying their formation. In contrast with melanogenesis, for which numerous mutations in pigment producing genes and mouse models have been identified, a genetic defect resulting in impaired dendrite formation has not been found. Therefore, much of the insight into melanocyte dendrites has come from electron microscopy or in vitro culture systems of normal human and murine melanocytes as well as melanoma cell lines. The growth factors that regulate the formation of melanocyte dendrites have been thoroughly studied and it is clear that multiple signalling systems are able to stimulate, and in some cases inhibit, dendrite formation. Recent data points to the Rho family of small guanosine triphosphate (GTP)-binding proteins as master regulators of dendrite formation, particularly Rac and Rho. In this review I will summarize the progress scientists have made in understanding the structure, hormonal regulation and molecular mediators of melanocyte dendrite formation. [source]


Environmental and hormonal regulation of the activity,dormancy cycle in the cambial meristem involves stage-specific modulation of transcriptional and metabolic networks

THE PLANT JOURNAL, Issue 4 2007
Nathalie Druart
Summary We have performed transcript and metabolite profiling of isolated cambial meristem cells of the model tree aspen during the course of their activity,dormancy cycle to better understand the environmental and hormonal regulation of this process in perennial plants. Considerable modulation of cambial transcriptome and metabolome occurs throughout the activity,dormancy cycle. However, in addition to transcription, post-transcriptional control is also an important regulatory mechanism as exemplified by the regulation of cell-cycle genes during the reactivation of cambial cell division in the spring. Genes related to cold hardiness display temporally distinct induction patterns in the autumn which could explain the step-wise development of cold hardiness. Factors other than low temperature regulate the induction of early cold hardiness-related genes whereas abscisic acid (ABA) could potentially regulate the induction of late cold hardiness-related genes in the autumn. Starch breakdown in the autumn appears to be regulated by the ,short day' signal and plays a key role in providing substrates for the production of energy, fatty acids and cryoprotectants. Catabolism of sucrose and fats provides energy during the early stages of reactivation in the spring, whereas the reducing equivalents are generated through activation of the pentose phosphate shunt. Modulation of gibberellin (GA) signaling and biosynthesis could play a key role in the regulation of cambial activity during the activity,dormancy cycle as suggested by the induction of PttRGA which encodes a negative regulator of growth in the autumn and that of a GA-20 oxidase, a key gibberellin biosynthesis gene during reactivation in spring. In summary, our data reveal the dynamics of transcriptional and metabolic networks and identify potential targets of environmental and hormonal signals in the regulation of the activity,dormancy cycle in cambial meristem. [source]


Hormonal and nutritional regulation of insect fat body development and function

ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 1 2009
Ying Liu
Abstract The insect fat body is an organ analogue to vertebrate adipose tissue and liver and functions as a major organ for nutrient storage and energy metabolism. Similar to other larval organs, fat body undergoes a developmental "remodeling" process during the period of insect metamorphosis, with the massive destruction of obsolete larval tissues by programmed cell death and the simultaneous growth and differentiation of adult tissues from small clusters of progenitor cells. Genetic ablation of Drosophila fat body cells during larval-pupal transition results in lethality at the late pupal stage and changes sizes of other larval organs indicating that fat body is the center for pupal development and adult formation. Fat body development and function are largely regulated by several hormonal (i.e. insulin and ecdysteroids) and nutritional signals, including oncogenes and tumor suppressors in these pathways. Combining silkworm physiology with fruitfly genetics might provide a valuable system to understand the mystery of hormonal regulation of insect fat body development and function. © 2009 Wiley Periodicals, Inc. [source]


Neural substrates, experimental evidences and functional hypothesis of acupuncture mechanisms

ACTA NEUROLOGICA SCANDINAVICA, Issue 6 2006
Z. H. Cho
Objectives,,, Athough acupuncture therapy has demonstrated itself to be effective in several clinical areas, the underlying mechanisms of acupuncture in general and the analgesic effect in particular are, however, still not clearly delineated. We, therefore, have studied acupuncture analgesic effect through fMRI and proposed a hypothesis, based on the obtained result, which will enlighten the central role of the brain in acupuncture therapy. Methods,,, The proposed model, termed as a broad sense hypothalamus-pituitary-adrenal (BS-HPA) axis, was based on our observed neuroimaging results. The model incorporates the stress-induced HPA axis model together with neuro-immune interaction including the cholinergic anti-inflammatory model. Results,,, The obtained results coupled with accumulating evidence suggest that the central nervous system is essential for the processing of these effects via its modulation of the autonomic nervous system, neuroimmune system and hormonal regulation. Conclusions,,, Based on our fMRI study, it appears that understanding the effects of acupuncture within a neuroscience-based framework is vital. Further, we have proposed the broad sense-HPA axis hypothesis which incorporates the experimental results. [source]


Energy substrate production in infants born small for gestational age

ACTA PAEDIATRICA, Issue 1 2007
Barbro Diderholm
Abstract Aim: To investigate energy substrate production and its hormonal regulation in infants born small for gestational age. Methods: Eleven infants, aged 24.4 ± 5.3 hour, were studied following a fast of 4.0 ± 0.6 hour. Gestational age was 35.4 ± 2.8 weeks and birth weight 1804 ± 472 g (<,2 SD). Rates of glucose production and lipolysis were analyzed using [6,6- 2H2]-glucose and [2- 13C]-glycerol. Results: Plasma levels of glucose and glycerol were 4.1 ± 1.1 mmol . L,1 and 224 ± 79 ,mol . L,1, respectively. Glucose appearance averaged 30.3 ± 8.2 and glucose production rate 21.1 ± 6.1 ,mol . kg,1 . minutes,1. Glycerol production rate was 5.6 ± 1.6 ,mol . kg,1 . minutes,1, correlating strongly to birth weight (r = 0.904, p < 0.001). Of the glycerol produced, 55 ± 22% was converted to glucose, corresponding to 8 ± 3% of the glucose production. Conclusions: Even though the infants could produce energy substrates, lipolysis was reduced and the glucose production was in the low end of the normal range compared with infants born appropriate for gestational age. The correlation between glycerol production and birth weight indicates that lipolysis depends on the amount of stored fat. Data on insulin and insulin-like growth factor binding protein 1 support the view that insulin sensitivity in these infants is reduced in the liver but increased peripherally. [source]