Homer Proteins (homer + protein)

Distribution by Scientific Domains


Selected Abstracts


Homer proteins shape Xenopus optic tectal cell dendritic arbor development in vivo

DEVELOPMENTAL NEUROBIOLOGY, Issue 11 2008
Kendall R. Van Keuren-Jensen
Abstract Considerable evidence suggests that the Homer family of scaffolding proteins contributes to synaptic organization and function. We investigated the role of both Homer 1b, the constitutively expressed, and developmentally regulated form of Homer, and Homer 1a, the activity-induced immediate early gene, in dendritic arbor elaboration and synaptic function of developing Xenopus optic tectal neurons. We expressed exogenous Homer 1a or Homer 1b in developing Xenopus tectal neurons. By collecting in vivo time lapse images of individual, EGFP-labeled and Homer-expressing neurons over 3 days, we found that Homer 1b leads to a significant decrease in dendritic arbor growth rate and arbor size. Synaptic transmission was also altered in developing neurons transfected with Homer 1b. Cells expressing exogenous Homer 1b over 3 days had a significantly greater AMPA to NMDA ratios, and increased AMPA mEPSC frequency. These data suggest that increasing Homer 1b expression increases excitatory synaptic inputs, increases synaptic maturation, and slows dendritic arbor growth rate. Exogenous Homer 1a expression increases AMPA mEPSC frequency, but did not significantly affect tectal cell dendritic arbor development. Changes in the ratio of Homer 1a to Homer 1b may signal the neuron that overall activity levels in the cell have changed, and this in turn could affect protein interactions at the synapse, synaptic transmission, and structural development of the dendritic arbor. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2008. [source]


Regulation of Homer and group I metabotropic glutamate receptors by nicotine

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2005
J. K. Kane
Abstract The present study focuses on the nicotine-induced modulation of mRNA and protein expression of a number of genes involved in glutamatergic synaptic transmission in rat brain over different time periods of exposure. A subchronic (3 days) but not the chronic (7 or 14 days) administration of nicotine resulted in the up-regulation of Homer2a/b mRNA in the amygdala while in the ventral tegmental area (VTA) no change in expression of either Homer2a/b or Homer1b/c was observed. Although the increase in Homer2a/b mRNA was not translated into the protein level in the amygdala, a slight but significant up-regulation of Homer1b/c protein was observed in the same region at day 3. Both Homer forms were up-regulated at the protein level in the VTA at day 3. In the nucleus accumbens, 14 days of nicotine treatment up-regulated mRNA of Homer2b/c by 68.2% (P < 0.05), while the short form Homer1a gene was down-regulated by 65.0% at day 3 (P < 0.05). In regard to other components of the glutamatergic signalling, we identified an acute and intermittent increase in the mRNA and protein levels of mGluR1 and mGluR5 in the amygdala. In the VTA, however, the effects of nicotine on mGluR mRNA expression were long-lasting but rather specific to mGluR1. Nevertheless, mGluR1 protein levels in the VTA area were up-regulated only at day 3, as in the amygdala. These data provide further evidence for the involvement of nicotine in the glutamatergic neuronal synaptic activity in vivo, suggesting a role for the newly identified Homer proteins in this paradigm. [source]


Behavioral and neurochemical phenotyping of Homer1 mutant mice: possible relevance to schizophrenia

GENES, BRAIN AND BEHAVIOR, Issue 5 2005
K. K. Szumlinski
Homer proteins are involved in the functional assembly of postsynaptic density proteins at glutamatergic synapses and are implicated in learning, memory and drug addiction. Here, we report that Homer1 -knockout (Homer1 -KO) mice exhibit behavioral and neurochemical abnormalities that are consistent with the animal models of schizophrenia. Relative to wild-type mice, Homer1 -KO mice exhibited deficits in radial arm maze performance, impaired prepulse inhibition, enhanced ,behavioral despair', increased anxiety in a novel objects test, enhanced reactivity to novel environments, decreased instrumental responding for sucrose and enhanced MK-801- and methamphetamine-stimulated motor behavior. No-net-flux in vivo microdialysis revealed a decrease in extracellular glutamate content in the nucleus accumbens and an increase in the prefrontal cortex. Moreover, in Homer1 -KO mice, cocaine did not stimulate a rise in frontal cortex extracellular glutamate levels, suggesting hypofrontality. These behavioral and neurochemical data derived from Homer1 mutant mice are consistent with the recent association of schizophrenia with a single-nucleotide polymorphism in the Homer1 gene and suggest that the regulation of extracellular levels of glutamate within limbo-corticostriatal structures by Homer1 gene products may be involved in the pathogenesis of this neuropsychiatric disorder. [source]


Developmental roles for Homer: more than just a pretty scaffold

JOURNAL OF NEUROCHEMISTRY, Issue 1 2009
Lisa Foa
Abstract Homer proteins are best known as scaffold proteins at the post-synaptic density where they facilitate synaptic signalling and are thought to be required for learning and memory. Evidence implicating Homer proteins in the development of the nervous system is also steadily accumulating. Homer is highly conserved and is expressed at key developmental time points in the nervous system of several species. Homer regulates intracellular calcium homeostasis, clustering and trafficking of receptors and proteins at the cytosolic surface of the plasma membrane, transcription and translation, and cytoskeletal organization. Each of these functions has obvious potential to regulate neuronal development, and indeed Homer is implicated in several pathologies associated with the developing nervous system. Current data justify more critical experimental approaches to the role of Homer in the developing nervous system and related neurological disorders. [source]


Differential Effects of Chronic Ethanol Consumption and Withdrawal on Homer/Glutamate Receptor Expression in Subregions of the Accumbens and Amygdala of P Rats

ALCOHOLISM, Issue 11 2009
Ilona Obara
Background:, Homer proteins are constituents of scaffolding complexes that regulate the trafficking and function of central Group1 metabotropic glutamate receptors (mGluRs) and N -methyl- d -aspartate (NMDA) receptors. Research supports the involvement of these proteins in ethanol-induced neuroplasticity in mouse. In this study, we examined the effects of short versus long-term withdrawal from chronic ethanol consumption on Homer and glutamate receptor protein expression within striatal and amygdala subregions of selectively bred, alcohol-preferring P rats. Methods:, For 6 months, male P rats had concurrent access to 15% and 30% ethanol solutions under intermittent (IA: 4 d/wk) or continuous (CA: 7 d/wk) access conditions in their home cage. Rats were killed 24 hours (short withdrawal: SW) or 4 weeks (long withdrawal: LW) after termination of ethanol access, subregions of interest were micropunched and tissue processed for detection of Group1 mGluRs, NR2 subunits of the NMDA receptor and Homer protein expression. Results:, Within the nucleus accumbens (NAC), limited changes in NR2a and NR2b expression were detected in the shell (NACsh), whereas substantial changes were observed for Homer2a/b, mGluRs as well as NR2a and NR2b subunits in the core (NACc). Within the amygdala, no changes were detected in the basolateral subregion, whereas substantial changes, many paralleling those observed in the NACc, were detected in the central nucleus (CeA) subregion. In addition, most of the changes observed in the CeA, but not NACc, were present in both SW and LW rats. Conclusions:, Overall, these subregion specific, ethanol-induced increases in mGluR/Homer2/NR2 expression within the NAC and amygdala suggest changes in glutamatergic plasticity had taken place. This may be a result of learning and subsequent memory formation of ethanol's rewarding effects in these brain structures, which may, in part, mediate the chronic relapsing nature of alcohol abuse. [source]