Honeybee Brain (honeybee + brain)

Distribution by Scientific Domains


Selected Abstracts


Correlated expression patterns of microRNA genes with age-dependent behavioural changes in honeybee

INSECT MOLECULAR BIOLOGY, Issue 4 2010
S. K. Behura
Abstract The hive-living honeybees (Apis mellifera) show age-dependent behavioural changes; young bees usually nurse the broods in the colony and the older bees engage in foraging activities. These developmentally regulated behavioural changes were previously shown to be correlated with genome-wide transcriptional changes in the honeybee brain. The indigenous small regulatory RNA molecules, known as microRNAs (miRNAs), are potent regulators of gene expression and also are developmentally regulated. Thus, we wanted to study if there might be correlation of differential expression of miRNA genes in the brain with age-dependent behavioural changes of the bees. We determined expression patterns of a set (n= 20) of predicted miRNA genes, by quantitative real-time PCR assays, in the brains of young and old bees that were engaged in nursing or foraging activities in the colony, respectively. Our data show correlated up-regulation of miRNA-124, miRNA-14, miRNA-276, miRNA-13b, let-7 and miRNA-13a in the young nurse bees. miRNA-12, miRNA-9, miRNA-219, miRNA-210, miRNA-263, miRNA-92 and miRNA-283 showed correlated expression patterns in the old forager bees. The modular changes of miRNA genes in the young nurse and old forager bees suggest possible roles of miRNAs in age-dependent behavioural changes in bees. The correlated expression of intronic miRNA genes and their host genes as well as of miRNA genes physically clustered in the genome are also observed. [source]


Identification of a novel gene, Mblk-1, that encodes a putative transcription factor expressed preferentially in the large-type Kenyon cells of the honeybee brain

INSECT MOLECULAR BIOLOGY, Issue 5 2001
Hideaki Takeuchi
Abstract Mushroom bodies (MBs) are considered to be involved in higher-order sensory processing in the insect brain. To identify the genes involved in the intrinsic function of the honeybee MBs, we searched for genes preferentially expressed therein, using the differential display method. Here we report a novel gene encoding a putative transcription factor (Mblk-1) expressed preferentially in one of two types of intrinsic MB neurones, the large-type Kenyon cells, which makes Mblk-1 a candidate gene involved in the advanced behaviours of honeybees. A putative DNA binding motif of Mblk-1 had significant sequence homology with those encoded by genes from various animal species, suggesting that the functions of these proteins in neural cells are conserved among the animal kingdom. [source]


Allatostatin immunoreactivity in the honeybee brain

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 9 2010
Sabine Kreissl
Information transmission and processing in the brain is achieved through a small family of chemical neurotransmitters and neuromodulators and a very large family of neuropeptides. In order to understand neural networks in the brain it will be necessary, therefore, to understand the connectivity, morphology, and distribution of peptidergic neurons, and to elucidate their function in the brain. In this study we characterize the distribution of substances related to Dip-allatostatin I in the honeybee brain, which belongs to the allatostatin-A (AST) peptide family sharing the conserved c-terminal sequence -YXFGL-NH2. We found about 500 AST-immunoreactive (ASTir) neurons in the brain, scattered in 18 groups that varied in their precise location across individuals. Almost all areas of the brain were innervated by ASTir fibers. Most ASTir neurites formed networks within functionally distinct areas, e.g., the antennal lobes, the mushroom bodies, or the optic lobes, indicating local functions of the peptide. A small number of very large neurons had widespread arborizations and neurites were found in the corpora cardiaca and in the cervical connectives, suggesting that AST also has global functions. We double-stained AST and GABA and found that a subset of ASTir neurons were GABA-immunoreactive (GABAir). Double staining AST with backfills of olfactory receptor neurons or mass fills of neurons in the antennal lobes and in the mushroom bodies allowed a more fine-grained description of ASTir networks. Together, this first comprehensive description of AST in the bee brain suggests a diverse functional role of AST, including local and global computational tasks. J. Comp. Neurol. 518:1391,1417, 2010. © 2010 Wiley-Liss, Inc. [source]


Allatostatin immunoreactivity in the honeybee brain

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 9 2010
Sabine Kreissl
Abstract Information transmission and processing in the brain is achieved through a small family of chemical neurotransmitters and neuromodulators and a very large family of neuropeptides. In order to understand neural networks in the brain it will be necessary, therefore, to understand the connectivity, morphology, and distribution of peptidergic neurons, and to elucidate their function in the brain. In this study we characterize the distribution of substances related to Dip-allatostatin I in the honeybee brain, which belongs to the allatostatin-A (AST) peptide family sharing the conserved c-terminal sequence -YXFGL-NH2. We found about 500 AST-immunoreactive (ASTir) neurons in the brain, scattered in 18 groups that varied in their precise location across individuals. Almost all areas of the brain were innervated by ASTir fibers. Most ASTir neurites formed networks within functionally distinct areas, e.g., the antennal lobes, the mushroom bodies, or the optic lobes, indicating local functions of the peptide. A small number of very large neurons had widespread arborizations and neurites were found in the corpora cardiaca and in the cervical connectives, suggesting that AST also has global functions. We double-stained AST and GABA and found that a subset of ASTir neurons were GABA-immunoreactive (GABAir). Double staining AST with backfills of olfactory receptor neurons or mass fills of neurons in the antennal lobes and in the mushroom bodies allowed a more fine-grained description of ASTir networks. Together, this first comprehensive description of AST in the bee brain suggests a diverse functional role of AST, including local and global computational tasks. J. Comp. Neurol. 518:1391,1417, 2010. © 2010 Wiley-Liss, Inc. [source]


Three-dimensional average-shape atlas of the honeybee brain and its applications

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 1 2005
Robert Brandt
Abstract The anatomical substrates of neural nets are usually composed from reconstructions of neurons that were stained in different preparations. Realistic models of the structural relationships between neurons require a common framework. Here we present 3-D reconstructions of single projection neurons (PN) connecting the antennal lobe (AL) with the mushroom body (MB) and lateral horn, groups of intrinsic mushroom body neurons (type 5 Kenyon cells), and a single mushroom body extrinsic neuron (PE1), aiming to compose components of the olfactory pathway in the honeybee. To do so, we constructed a digital standard atlas of the bee brain. The standard atlas was created as an average-shape atlas of 22 neuropils, calculated from 20 individual immunostained whole-mount bee brains. After correction for global size and positioning differences by repeatedly applying an intensity-based nonrigid registration algorithm, a sequence of average label images was created. The results were qualitatively evaluated by generating average gray-value images corresponding to the average label images and judging the level of detail within the labeled regions. We found that the first affine registration step in the sequence results in a blurred image because of considerable local shape differences. However, already the first nonrigid iteration in the sequence corrected for most of the shape differences among individuals, resulting in images rich in internal detail. A second iteration improved on that somewhat and was selected as the standard. Registering neurons from different preparations into the standard atlas reveals 1) that the m-ACT neuron occupies the entire glomerulus (cortex and core) and overlaps with a local interneuron in the cortical layer; 2) that, in the MB calyces and the lateral horn of the protocerebral lobe, the axon terminals of two identified m-ACT neurons arborize in separate but close areas of the neuropil; and 3) that MB-intrinsic clawed Kenyon cells (type 5), with somata outside the calycal cups, project to the peduncle and lobe output system of the MB and contact (proximate) the dendritic tree of the PE1 neuron at the base of the vertical lobe. Thus the standard atlas and the procedures applied for registration serve the function of creating realistic neuroanatomical models of parts of a neural net. The Honeybee Standard Brain is accessible at www.neurobiologie.fu-berlin.de/beebrain. J. Comp. Neurol. 492:1,19, 2005. © 2005 Wiley-Liss, Inc. [source]