Home About us Contact | |||
Homology Modelling (homology + modelling)
Selected AbstractsInsights into the reaction mechanism of glycosyl hydrolase family 49FEBS JOURNAL, Issue 22 2004Site-directed mutagenesis, substrate preference of isopullulanase Aspergillus niger isopullulanase (IPU) is the only pullulan-hydrolase in glycosyl hydrolase (GH) family 49 and does not hydrolyse dextran at all, while all other GH family 49 enzymes are dextran-hydrolysing enzymes. To investigate the common catalytic mechanism of GH family 49 enzymes, nine mutants were prepared to replace residues conserved among GH family 49 (four Trp, three Asp and two Glu). Homology modelling of IPU was also carried out based on the structure of Penicillium minioluteum dextranase, and the result showed that Asp353, Glu356, Asp372, Asp373 and Trp402, whose substitutions resulted in the reduction of activity for both pullulan and panose, were predicted to be located in the negatively numbered subsites. Three Asp-mutated enzymes, D353N, D372N and D373N, lost their activities, indicating that these residues are candidates for the catalytic residues of IPU. The W402F enzyme significantly reduced IPU activity, and the Km value was sixfold higher and the k0 value was 500-fold lower than those for the wild-type enzyme, suggesting that Trp402 is a residue participating in subsite ,1. Trp31 and Glu273, whose substitutions caused a decrease in the activity for pullulan but not for panose, were predicted to be located in the interface between N-terminal and ,-helical domains. The substrate preference of the negatively numbered subsites of IPU resembles that of GH family 49 dextranases. These findings suggest that IPU and the GH family 49 dextranases have a similar catalytic mechanism in their negatively numbered subsites in spite of the difference of their substrate specificities. [source] The role of residues R97 and Y331 in modulating the pH optimum of an insect ,-glycosidase of family 1FEBS JOURNAL, Issue 24 2003Sandro R. Marana The activity of the digestive ,-glycosidase from Spodoptera frugiperda (Sf,gly50, pH optimum 6.2) depends on E399 (pKa = 4.9; catalytic nucleophile) and E187 (pKa = 7.5; catalytic proton donor). Homology modelling of the Sf,gly50 active site confirms that R97 and Y331 form hydrogen bonds with E399. Site-directed mutagenesis showed that the substitution of R97 by methionine or lysine increased the E399 pKa by 0.6 or 0.8 units, respectively, shifting the pH optima of these mutants to 6.5. The substitution of Y331 by phenylalanine increased the pKa of E399 and E187 by 0.7 and 1.6 units, respectively, and displaced the pH optimum to 7.0. From the observed ,pKa it was calculated that R97 and Y331 contribute 3.4 and 4.0 kJ·mol,1, respectively, to stabilization of the charged E399, thus enabling it to be the catalytic nucleophile. The substitution of E187 by D decreased the pKa of residue 187 by 0.5 units and shifted the pH optimum to 5.8, suggesting that an electrostatic repulsion between the deprotonated E399 and E187 may increase the pKa of E187, which then becomes the catalytic proton donor. In short the data showed that a network of noncovalent interactions among R97, Y331, E399 and E187 controls the Sf,gly50 pH optimum. As those residues are conserved among the family 1 ,-glycosidases, it is proposed here that similar interactions modulate the pH optimum of all family 1 ,-glycosidases. [source] Structural and catalytic properties and homology modelling of the human nucleoside diphosphate kinase C, product of the DRnm23 geneFEBS JOURNAL, Issue 7 2001Muriel Erent The human DRnm23 gene was identified by differential screening of a cDNA library obtained from chronic myeloid leukaemia-blast crisis primary cells. The over-expression of this gene inhibits differentiation and induces the apoptosis of myeloid precursor cell lines. We overproduced in bacteria a truncated form of the encoded protein lacking the first 17 N-terminal amino acids. This truncated protein was called nucleoside diphosphate (NDP) kinase C,. NDP kinase C, had similar kinetic properties to the major human NDP kinases A and B, but was significantly more stable to denaturation by urea and heat. Analysis of denaturation by urea, using size exclusion chromatography, indicated unfolding without the dissociation of subunits, whereas renaturation occurred via a folded monomer. The stability of the protein depended primarily on subunit interactions. Homology modelling of the structure of NDP kinase C,, based on the crystal structure of NDP kinase B, indicated that NDP kinase C, had several additional stabilizing interactions. The overall structure of the two enzymes appears to be identical because NDP kinase C, readily formed mixed hexamers with NDP kinase A. It is possible that mixed hexamers can be observed in vivo. [source] The evolutionarily conserved residue A653 plays a key role in HERG channel closingTHE JOURNAL OF PHYSIOLOGY, Issue 11 2009Svetlana Z. Stepanovic Human ether-a-go-go- related gene (HERG) encodes the rapid, outwardly rectifying K+ current IKr that is critical for repolarization of the cardiac action potential. Congenital HERG mutations or unintended pharmaceutical block of IKr can lead to life-threatening arrhythmias. Here, we assess the functional role of the alanine at position 653 (HERG-A653) that is highly conserved among evolutionarily divergent K+ channels. HERG-A653 is close to the ,glycine hinge' implicated in K+ channel opening, and is flanked by tyrosine 652 and phenylalanine 656, which contribute to the drug binding site. We substituted an array of seven (I, C, S, G, Y, V and T) amino acids at position 653 and expressed individual variants in heterologous systems to assess changes in gating and drug binding. Substitution of A653 resulted in negative shifts of the V1/2 of activation ranging from ,23.6 (A653S) to ,62.5 (A653V) compared to ,11.2 mV for wild-type (WT). Deactivation was also drastically altered: channels with A653I/C substitutions exhibited delayed deactivation in response to test potentials above the activation threshold, while A653S/G/Y/V/T failed to deactivate under those conditions and required hyperpolarization and prolonged holding potentials at ,130 mV. While A653S/G/T/Y variants showed decreased sensitivity to the IKr inhibitor dofetilide, these changes could not be correlated with defects in channel closure. Homology modelling suggests that in the closed state, A653 forms tight contacts with several residues from the neighbouring subunit in the tetramer, playing a key role in S6 helix packing at the narrowest part of the vestibule. Our study suggests that A653 plays an important functional role in the outwardly rectifying gating behaviour of HERG, supporting channel closure at membrane potentials negative to the channel activation threshold. [source] Insect chymotrypsins: chloromethyl ketone inactivation and substrate specificity relative to possible coevolutional adaptation of insects and plants,ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 3 2009Adriana R. Lopes Abstract Insect digestive chymotrypsins are present in a large variety of insect orders but their substrate specificity still remains unclear. Four insect chymotrypsins from 3 different insect orders (Dictyoptera, Coleoptera, and two Lepidoptera) were isolated using affinity chromatography. Enzymes presented molecular masses in the range of 20 to 31,kDa and pH optima in the range of 7.5 to 10.0. Kinetic characterization using different colorimetric and fluorescent substrates indicated that insect chymotrypsins differ from bovine chymotrypsin in their primary specificity toward small substrates (like N- benzoyl-L-Tyr p- nitroanilide) rather than on their preference for large substrates (exemplified by Succynil-Ala-Ala-Pro-Phe p- nitroanilide). Chloromethyl ketones (TPCK, N- ,-tosyl-L-Phe chloromethyl ketone and Z-GGF-CK, N- carbobenzoxy-Gly-Gly-Phe-CK) inactivated all chymotrypsins tested. Inactivation rates follow apparent first-order kinetics with variable second order rates (TPCK, 42 to 130,M,1,s,1; Z-GGF-CK, 150 to 450,M,1,s,1) that may be remarkably low for S. frugiperda chymotrypsin (TPCK, 6,M,1,s,1; Z-GGF-CK, 6.1,M,1,s,1). Homology modelling and sequence alignment showed that in lepidopteran chymotrypsins, differences in the amino acid residues in the neighborhood of the catalytic His 57 may affect its pKa value. This is proposed as the cause of the decrease in His 57 reactivity toward chloromethyl ketones. Such amino acid replacement in the active site is proposed to be an adaptation to the presence of dietary ketones. © 2009 Wiley Periodicals, Inc. [source] Structure and function of AMP-activated protein kinaseACTA PHYSIOLOGICA, Issue 1 2009J. S. Oakhill Abstract AMP-activated protein kinase (AMPK) regulates metabolism in response to energy demand and supply. AMPK is activated in response to rises in intracellular AMP or calcium-mediated signalling and is responsible for phosphorylating a wide variety of substrates. Recent structural studies have revealed the architecture of the ,,, subunit interactions as well as the AMP binding pockets on the , subunit. The , catalytic domain (1,280) is autoinhibited by a C-terminal tail (313,335), which is proposed to interact with the small lobe of the catalytic domain by homology modelling with the MARK2 protein structure. Two direct activating drugs have been reported for AMPK, the thienopyridone compound A769662 and PTI, which may activate by distinct mechanisms. [source] Compound heterozygosity of two missense mutations in the NADH-cytochrome b5 reductase gene of a Polish patient with type I recessive congenital methaemoglobinaemiaEUROPEAN JOURNAL OF HAEMATOLOGY, Issue 6 2003Dorota Grabowska Abstract: A case of type I methaemoglobinaemia observed in a Polish subject with compound heterozygosity for two mutations in the reduced nicotinamide adenine dinucleotide (NADH) cytochrome b5 reductase (b5R) gene is described. One is a novel mutation 647T,C which leads to substitution of isoleucine by threonine at position 215 (I215T). This maternal mutation was found in several family members. A previously known mutation, 757G,A, leads to the replacement of valine by methionine at position 252 (V252M). The latter mutation was found also in the father and one of the two brothers. The effects of these mutations were analysed on a model of the human b5R protein obtained by homology modelling. Although both amino acid substitutions are located in the NADH-binding domain, the whole protein structure, especially the region between the flavin adenine dinucleotide and NADH-binding domains, is disturbed. The structural changes in the I215T mutant are less prominent than those in the V252M mutant. We presume that the 647T,C mutation is a type I mutation, however, it has not been observed in the homozygous state. [source] Abundance of intrinsic disorder in SV-IV, a multifunctional androgen-dependent protein secreted from rat seminal vesicleFEBS JOURNAL, Issue 4 2008Silvia Vilasi The potent immunomodulatory, anti-inflammatory and procoagulant properties of protein no. 4 secreted from the rat seminal vesicle epithelium (SV-IV) have previously been found to be modulated by a supramolecular monomer,trimer equilibrium. More structural details that integrate experimental data into a predictive framework have recently been reported. Unfortunately, homology modelling and fold-recognition strategies were not successful in creating a theoretical model of the structural organization of SV-IV. It was inferred that the global structure of SV-IV is not similar to that of any protein of known three-dimensional structure. Reversing the classical approach to the sequence,structure,function paradigm, in this paper we report novel information obtained by comparing the physicochemical parameters of SV-IV with two datasets composed of intrinsically unfolded and ideally globular proteins. In addition, we analyse the SV-IV sequence by several publicly available disorder-oriented predictors. Overall, disorder predictions and a re-examination of existing experimental data strongly suggest that SV-IV needs large plasticity to efficiently interact with the different targets that characterize its multifaceted biological function, and should therefore be better classified as an intrinsically disordered protein. [source] Structural and catalytic properties and homology modelling of the human nucleoside diphosphate kinase C, product of the DRnm23 geneFEBS JOURNAL, Issue 7 2001Muriel Erent The human DRnm23 gene was identified by differential screening of a cDNA library obtained from chronic myeloid leukaemia-blast crisis primary cells. The over-expression of this gene inhibits differentiation and induces the apoptosis of myeloid precursor cell lines. We overproduced in bacteria a truncated form of the encoded protein lacking the first 17 N-terminal amino acids. This truncated protein was called nucleoside diphosphate (NDP) kinase C,. NDP kinase C, had similar kinetic properties to the major human NDP kinases A and B, but was significantly more stable to denaturation by urea and heat. Analysis of denaturation by urea, using size exclusion chromatography, indicated unfolding without the dissociation of subunits, whereas renaturation occurred via a folded monomer. The stability of the protein depended primarily on subunit interactions. Homology modelling of the structure of NDP kinase C,, based on the crystal structure of NDP kinase B, indicated that NDP kinase C, had several additional stabilizing interactions. The overall structure of the two enzymes appears to be identical because NDP kinase C, readily formed mixed hexamers with NDP kinase A. It is possible that mixed hexamers can be observed in vivo. [source] Combined homology modelling and evolutionary significance evaluation of missense mutations in blood clotting factor VIII to highlight aspects of structure and functionHAEMOPHILIA, Issue 4 2009A. MARKOFF Summary., Most small lesions in the factor VIII (FVIII) gene that cause haemophilia A (HA) are single nucleotide substitutions resulting in amino acid replacing (missense) mutations and leading to various phenotypes, ranging from mild to severe. We took a combined approach of homology modelling and quantitative evaluation of evolutionary significance of amino acid replacing alterations using the Grantham Matrix Score (GMS) to assess their structural effects and significance of pathological expression. Comparative homology models of all amino acid substitutions summarized in the FVIII mutations database plus these identified and reported lately by us or by our collaborators were evaluated. Altogether 640 amino acid replacing mutations were scored for potential distant or local conformation changes, influence on the molecular stability and predicted contact residues, using available FVIII domain models. The average propensity to substitute amino acid residues by mutation was found comparable to the overall probability of de novo mutations. Missense changes reported with various HA phenotypes were all confirmed significant using GMS. The fraction of these, comprising residues apparently involved in intermolecular interactions, exceeds the average proportion of such residues for FVIII. Predicted contact residues changed through mutation were visualized on the surface of FVIII domains and their possible functional implications were verified from the literature and are discussed considering available structural information. Our predictive modelling adds on the current view of domain interface molecular contacts. This structural insight could aid in part to the design of engineered FVIII constructs for therapy, to possibly enhance their stability and prolong circulating lifetime. [source] PDB_REDO: automated re-refinement of X-ray structure models in the PDBJOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 3 2009Robbie P. Joosten Structural biology, homology modelling and rational drug design require accurate three-dimensional macromolecular coordinates. However, the coordinates in the Protein Data Bank (PDB) have not all been obtained using the latest experimental and computational methods. In this study a method is presented for automated re-refinement of existing structure models in the PDB. A large-scale benchmark with 16,807 PDB entries showed that they can be improved in terms of fit to the deposited experimental X-ray data as well as in terms of geometric quality. The re-refinement protocol uses TLS models to describe concerted atom movement. The resulting structure models are made available through the PDB_REDO databank (http://www.cmbi.ru.nl/pdb_redo/). Grid computing techniques were used to overcome the computational requirements of this endeavour. [source] COMPACT: a structural approach to the modelling of cytochromes P450 and their interactions with xenobioticsJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 3 2001David F, V Lewis Abstract An overview of the COMPACT method for evaluating potential toxicity mediated by cytochrome P450 enzymes is presented. Particular aspects of P450s are described, together with details of QSARs and homology modelling of mammalian P450s associated with foreign compound metabolism. © 2001 Society of Chemical Industry [source] Structural Models and Binding Site Prediction of the C-terminal Domain of Human Hsp90: A New Target for Anticancer DrugsCHEMICAL BIOLOGY & DRUG DESIGN, Issue 5 2008Miriam Sgobba Heat shock protein 90 is a valuable target for anticancer drugs because of its role in the activation and stabilization of multiple oncogenic signalling proteins. While several compounds inhibit heat shock protein 90 by binding the N-terminal domain, recent studies have proved that the C-terminal domain is important for dimerization of the chaperone and contains an additional binding site for inhibitors. Heat shock protein 90 inhibition achieved with molecules binding to the C-terminal domain provides an additional and novel opportunity to design and develop drugs. Therefore, for the first time, we have investigated the structure and the dynamic behaviour of the C-terminal domain of human heat shock protein 90 with and without the small-middle domain, using homology modelling and molecular dynamics simulations. In addition, secondary structure predictions and peptide folding simulations proved useful to investigate a putative additional ,-helix located between H18 and ,20 of the C-terminal domain. Finally, we used the structural information to infer the location of the binding site located in the C-terminal domain by using a number of computational tools. The predicted pocket is formed by two grooves located between helix H18, the loop downstream of H18 and the loop connecting helices H20 and H21 of each monomer of the C-terminal domain, with only two amino acids contributing from each middle domain. [source] |