Home About us Contact | |||
Homologous Recombination (homologous + recombination)
Terms modified by Homologous Recombination Selected AbstractsFrom meiosis to postmeiotic events: Homologous recombination is obligatory but flexibleFEBS JOURNAL, Issue 3 2010Lóránt Székvölgyi Sexual reproduction depends on the success of faithful chromosome transmission during meiosis to yield viable gametes. Central to meiosis is the process of recombination between paternal and maternal chromosomes, which boosts the genetic diversity of progeny and ensures normal homologous chromosome segregation. Imperfections in meiotic recombination are the source of de novo germline mutations, abnormal gametes, and infertility. Thus, not surprisingly, cells have developed a variety of mechanisms and tight controls to ensure sufficient and well-distributed recombination events within their genomes, the details of which remain to be fully elucidated. Local and genome-wide studies of normal and genetically engineered cells have uncovered a remarkable stochasticity in the number and positioning of recombination events per chromosome and per cell, which reveals an impressive level of flexibility. In this minireview, we summarize our contemporary understanding of meiotic recombination and its control mechanisms, and address the seemingly paradoxical and poorly understood diversity of recombination sites. Flexibility in the distribution of meiotic recombination events within genomes may reside in regulation at the chromatin level, with histone modifications playing a recently recognized role. [source] Effect of monovalent cations and G-quadruplex structures on the outcome of intramolecular homologous recombinationFEBS JOURNAL, Issue 11 2009Paula Barros Homologous recombination is a very important cellular process, as it provides a major pathway for the repair of DNA double-strand breaks. This complex process is affected by many factors within cells. Here, we have studied the effect of monovalent cations (K+, Na+, and NH4+) on the outcome of recombination events, as their presence affects the biochemical activities of the proteins involved in recombination as well as the structure of DNA. For this purpose, we used an in vitro recombination system that includes a protein nuclear extract, as a source of recombination machinery, and two plasmids as substrates for intramolecular homologous recombination, each with two copies of different alleles of the human minisatellite MsH43. We found that the presence of monovalent cations induced a decrease in the recombination frequency, accompanied by an increase in the fidelity of the recombination. Moreover, there is an emerging consensus that secondary structures of DNA have the potential to induce genomic instability. Therefore, we analyzed the effect of the sequences capable of forming G-quadruplex on the production of recombinant molecules, taking advantage of the capacity of some MsH43 alleles to generate these kinds of structure in the presence of K+. We observed that the MsH43 recombinants containing duplications, generated in the presence of K+, did not include the repeats located towards the 5,-side of the G-quadruplex motif, suggesting that this structure may be involved in the recombination events leading to duplications. Our results provide new insights into the molecular mechanisms underlying the recombination of repetitive sequences. [source] Isolation and characterization of the RAD54 gene from Arabidopsis thalianaTHE PLANT JOURNAL, Issue 6 2006Keishi Osakabe Summary Homologous recombination (HR) is an essential process in maintaining genome integrity and variability. In eukaryotes, the Rad52 epistasis group proteins are involved in meiotic recombination and/or HR repair. One member of this group, Rad54, belongs to the SWI2/SNF2 family of DNA-stimulated ATPases. Recent studies indicate that Rad54 has important functions in HR, both as a chromatin remodelling factor and as a mediator of the Rad51 nucleoprotein filament. Despite the importance of Rad54 in HR, no study of Rad54 from plants has yet been performed. Here, we cloned the full-length AtRAD54 cDNA sequence; an open reading frame of 910 amino acids encodes a protein with a predicted molecular mass of 101.9 kDa. Western blotting analysis showed that the AtRad54 protein was indeed expressed as a protein of approximately 110 kDa in Arabidopsis. The predicted protein sequence of AtRAD54 contains seven helicase domains, which are conserved in all other Rad54s. Yeast two-hybrid analysis revealed an interaction between Arabidopsis Rad51 and Rad54. AtRAD54 transcripts were found in all tissues examined, with the highest levels of expression in flower buds. Expression of AtRAD54 was induced by , -irradiation. A T-DNA insertion mutant of AtRAD54 devoid of full-length AtRAD54 expression was viable and fertile; however, it showed increased sensitivity to , -irradiation and the cross-linking reagent cisplatin. In addition, the efficiency of somatic HR in the mutant plants was reduced relative to that in wild-type plants. Our findings point to an important role for Rad54 in HR repair in higher plants. [source] Wrestling off RAD51: a novel role for RecQ helicasesBIOESSAYS, Issue 4 2008Leonard Wu Homologous recombination (HR) is essential for the accurate repair of DNA double-strand breaks and damaged replication forks. However, inappropriate or aberrant HR can also result in genome rearrangements. The maintenance of cell viability is, therefore, a careful balancing act between the benefits of HR (the error-free repair of DNA strand breaks) and the potential detrimental outcomes of HR (chromosomal rearrangements). Two papers have recently provided a mechanistic insight into how HR may be tempered by RecQ helicases to prevent genome instability and diseases that are a consequence of this, such as cancer.1,2 BioEssays 30:291,295, 2008. © 2008 Wiley Periodicals, Inc. [source] Clinical relevance of the homologous recombination machinery in cancer therapyCANCER SCIENCE, Issue 2 2008Kiyoshi Miyagawa Cancer chemotherapy and radiotherapy kill cancer cells by inducing DNA damage, unless the lesions are repaired by intrinsic repair pathways. DNA double-strand breaks (DSB) are the most deleterious type of damage caused by cancer therapy. Homologous recombination (HR) is one of the major repair pathways for DSB and is thus a potential target of cancer therapy. Cells with a defect in HR have been shown to be sensitive to a variety of DNA-damaging agents, particularly interstrand crosslink (ICL)-inducing agents such as mitomycin C and cisplatin. These findings have recently been applied to clinical studies of cancer therapy. ERCC1, a structure-specific endonuclease involved in nucleotide excision repair (NER) and HR, confers resistance to cisplatin. Patients with ERCC1-negative non-small-cell lung cancer were shown to benefit from adjuvant cisplatin-based chemotherapy. Imatinib, an inhibitor of the c-Abl kinase, has been investigated as a sensitizer in DNA-damaging therapy, because c-Abl activates Rad51, which plays a key role in HR. Furthermore, proteins involved in HR have been shown to repair DNA damage induced by a variety of other chemotherapeutic agents, including camptothecin and gemcitabine. These findings highlight the importance of HR machinery in cancer therapy. (Cancer Sci 2008; 99: 187,194) [source] Novel functions of ribosomal protein S6 in growth and differentiation of Dictyostelium cellsDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 6 2009Kazutaka Ishii We have previously shown that in Dictyostelium cells a 32 kDa protein is rapidly and completely dephosphorylated in response to starvation that is essential for the initiation of differentiation (Akiyama & Maeda 1992). In the present work, this phosphoprotein was identified as a homologue (Dd-RPS6) of ribosomal protein S6 (RPS6) that is an essential member for protein synthesis. As expected, Dd-RPS6 seems to be absolutely required for cell survival, because we failed to obtain antisense-RNA mediated cells as well as Dd-rps6 -null cells by homologous recombination in spite of many trials. In many kinds of cell lines, RPS6 is known to be located in the nucleus and cytosol, but Dd-RPS6 is predominantly located in the cell cortex with cytoskeletons, and in the contractile ring of just-dividing cells. In this connection, the overexpression of Dd-RPS6 greatly impairs cytokinesis during axenic shake-cultures in growth medium, resulting in the formation of multinucleate cells. Much severe impairment of cytokinesis was observed when Dd-RPS6-overexpressing cells (Dd-RPS6OE cells) were incubated on a living Escherichia coli lawn. The initiation of differentiation triggered by starvation was also delayed in Dd-RPS6OE cells. In addition, Dd-RPS6OE cells exhibit defective differentiation into prespore cells and spores during late development. Thus, it is likely that the proper expression of Dd-RPS6 may be of importance for the normal progression of late differentiation as well as for the initiation of differentiation. [source] Molecular mechanisms and diagnosis of chromosome 22q11.2 rearrangementsDEVELOPMENTAL DISABILITIES RESEARCH REVIEW, Issue 1 2008Beverly S. Emanuel Abstract Several recurrent, constitutional genomic disorders are present on chromosome 22q. These include the translocations and deletions associated with DiGeorge and velocardiofacial syndrome and the translocations that give rise to the recurrent t(11;22) supernumerary der(22) syndrome (Emanuel syndrome). The rearrangement breakpoints on 22q cluster around the chromosome-specific segmental duplications of proximal 22q11, which are involved in the etiology of these disorders. While the deletions are the result of nonallelic homologous recombination (NAHR) between low copy repeats or segmental duplications within 22q11, the t(11;22) is the result of rearrangement between palindromic AT-rich repeats on 11q and 22q. Here we describe the mechanisms responsible for these recurrent rearrangements, discuss the recurrent deletion endpoints that are the result of NAHR between chromosome 22q specific low copy repeats as well as present current diagnostic approaches to deletion detection. © 2008 Wiley-Liss, Inc. Dev Disabil Res Rev 2008;14:11,18. [source] Zinc finger gene fez - like functions in the formation of subplate neurons and thalamocortical axonsDEVELOPMENTAL DYNAMICS, Issue 3 2004Tustomu Hirata Abstract fez - like (fezl) is a forebrain-expressed zinc finger gene required for the formation of the hypothalamic dopaminergic and serotonergic (monoaminergic) neurons in zebrafish. To reveal its function in mammals, we analyzed the expression of the mouse orthologue of fezl and generated fezl -deficient mice by homologous recombination. Mouse fezl was expressed specifically in the forebrain from embryonic day 8.5. At mid-gestation, fezl expression was detected in subdomains of the forebrain, including the dorsal telencephalon and ventral diencephalon. Unlike the zebrafish fezl mutant too few, the fezl -deficient mice displayed normal development of hypothalamic monoaminergic neurons, but showed abnormal "hyperactive" behavior. In fezl,/, mice, the thalamocortical axons (TCA) were reduced in number and aberrantly projected to the cortex. These mutants had a reduced number of subplate neurons, which are involved in guiding the TCA from the dorsal thalamus, although the subplate neurons were born normally. These results suggest that fezl is required for differentiation or survival of the subplate neurons, and reduction of the subplate neurons in fezl -deficient mice leads to abnormal development of the TCA, providing a possible link between the transcriptional regulation of forebrain development and hyperactive behavior. Developmental Dynamics 230:546,556, 2004. © 2004 Wiley-Liss, Inc. [source] Xenopus, the next generation: X. Tropicalis genetics and genomicsDEVELOPMENTAL DYNAMICS, Issue 4 2002Nicolas Hirsch Abstract A small, fast-breeding, diploid relative of the frog Xenopus laevis, Xenopus tropicalis, has recently been adopted for research in developmental genetics and functional genomics. X. tropicalis shares advantages of X. laevis as a classic embryologic system, but its simpler genome and shorter generation time make it more convenient for multigenerational genetic, genomic, and transgenic approaches. Its embryos closely resemble those of X. laevis, except for their smaller size, and assays and molecular probes developed in X. laevis can be readily adapted for use in X. tropicalis. Genomic manipulation techniques such as gynogenesis facilitate genetic screens, because they permit the identification of recessive phenotypes after only one generation. Stable transgenic lines can be used both as in vivo reporters to streamline a variety of embryologic and molecular assays, or to experimentally manipulate gene expression through the use of binary constructs such as the GAL4/UAS system. Several mutations have been identified in wild-caught animals and during the course of generating inbred lines. A variety of strategies are discussed for conducting and managing genetic screens, obtaining mutations in specific sequences, achieving homologous recombination, and in developing and taking advantage of the genomic resources for Xenopus tropicalis. © 2002 Wiley-Liss, Inc. [source] Fitness drift of an atrazine-degrading population under atrazine selection pressureENVIRONMENTAL MICROBIOLOGY, Issue 3 2008Marion Devers Summary Pseudomonas sp. ADP harbouring the atrazine catabolic plasmid ADP1 was subcultured in liquid medium containing atrazine as sole source of nitrogen. After approximately 320 generations, a new population evolved which replaced the initial population. This newly evolved population grew faster and degraded atrazine more rapidly than the initial population. Plasmid profiles and Southern blot analyses revealed that the evolved strain, unlike the ancestral strain, presented a tandem duplication of the atzB gene encoding the second enzyme of the atrazine catabolic pathway responsible for the transformation of hydroxyatrazine to N-isopropylammelide. This duplication resulted from a homologous recombination that occurred between two direct repeats of 6.2 kb flanking the atzB gene and constituted by the insertion sequences IS1071, ISPps1 and a pdhL homologous sequence. This study highlights the IS-mediated plasticity of atrazine-degrading potential and demonstrates that insertion sequences not only help to disperse the atrazine-degrading gene but also improve the fitness of the atrazine-degrading population. [source] Functional plasticity and robustness are essential characteristics of biological systems: Lessons learned from KLRG1-deficient miceEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 5 2010Stipan Jonjic Abstract Killer cell lectin-like receptor G1 (KLRG1) receptor is considered to be a marker of terminally differentiated NK and T cells and is strongly induced by viral and other infections. KLRG1 is a C-type lectin-like inhibitory receptor, which interacts with members of the cadherin family of molecules leading to the inhibition of T- and NK-cell function. A study in this issue of the European Journal of Immunology addresses the role of KLRG1 in the maturation and differentiation of NK and T cells in vivo. Using KLRG1-deficient mice generated by homologous recombination, the study reveals that KLRG1 is dispensable for NK- and CD8+ T-cell differentiation and function in vivo. This interesting finding is discussed in this Commentary in light of the plasticity and robustness of immune response mechanisms. [source] Generation of embryonic stem cells and transgenic mice expressing green fluorescence protein in midbrain dopaminergic neuronsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2004Suling Zhao Abstract We have generated embryonic stem (ES) cells and transgenic mice with green fluorescent protein (GFP) inserted into the Pitx3 locus via homologous recombination. In the central nervous system, Pitx3 -directed GFP was visualized in dopaminergic (DA) neurons in the substantia nigra and ventral tegmental area. Live primary DA neurons can be isolated by fluorescence-activated cell sorting from these transgenic mouse embryos. In culture, Pitx3,GFP is coexpressed in a proportion of ES-derived DA neurons. Furthermore, ES cell-derived Pitx3,GFP expressing DA neurons responded to neurotrophic factors and were sensitive to DA-specific neurotoxin N-4-methyl-1, 2, 3, 6-tetrahydropyridine. We anticipate that the Pitx3,GFP ES cells could be used as a powerful model system for functional identification of molecules governing mDA neuron differentiation and for preclinical research including pharmaceutical drug screening and transplantation. The Pitx3 knock-in mice, on the other hand, could be used for purifying primary neurons for molecular studies associated with the midbrain-specific DA phenotype at a level not previously feasible. These mice would also provide a useful tool to study DA fate determination from embryo- or adult-derived neural stem cells. [source] Embryonic Stem Cells and Gene TargetingEXPERIMENTAL PHYSIOLOGY, Issue 6 2000Birgit Ledermann The development of gene targeting technology, the exchange of an endogenous allele of a target gene for a mutated copy via homologous recombination, and the application of this technique to murine embryonic stem cells has made it possible to alter the germ-line of mice in a predetermined way. Gene targeting has enabled researchers to generate mouse strains with defined mutations in their genome allowing the analysis of gene function in vivo. This review presents the essential tools and methodologies used for gene targeting that have been developed over the past decade. Special emphasis has been laid on the available embryonic stem cell lines and the importance of the genetic background. Also, the state-of-the art of gene targeting approaches in species other than mice will be discussed. [source] Analysis of DNA-binding sites on Mhr1, a yeast mitochondrial ATP-independent homologous pairing proteinFEBS JOURNAL, Issue 6 2010Tokiha Masuda The Mhr1 protein is necessary for mtDNA homologous recombination in Saccharomyces cerevisiae. Homologous pairing (HP) is an essential reaction during homologous recombination, and is generally catalyzed by the RecA/Rad51 family of proteins in an ATP-dependent manner. Mhr1 catalyzes HP through a mechanism similar, at the DNA level, to that of the RecA/Rad51 proteins, but without utilizing ATP. However, it has no sequence homology with the RecA/Rad51 family proteins or with other ATP-independent HP proteins, and exhibits different requirements for DNA topology. We are interested in the structural features of the functional domains of Mhr1. In this study, we employed the native fluorescence of Mhr1's Trp residues to examine the energy transfer from the Trp residues to etheno-modified ssDNA bound to Mhr1. Our results showed that two of the seven Trp residues (Trp71 and Trp165) are spatially close to the bound DNA. A systematic analysis of mutant Mhr1 proteins revealed that Asp69 is involved in Mg2+ -dependent DNA binding, and that multiple Lys and Arg residues located around Trp71 and Trp165 are involved in the DNA-binding activity of Mhr1. In addition, in vivo complementation analyses showed that a region around Trp165 is important for the maintenance of mtDNA. On the basis of these results, we discuss the function of the region surrounding Trp165. [source] From meiosis to postmeiotic events: Uncovering the molecular roles of the meiosis-specific recombinase Dmc1FEBS JOURNAL, Issue 3 2010Wataru Kagawa In meiosis, the accurate segregation of maternal and paternal chromosomes is accomplished by homologous recombination. A central player in meiotic recombination is the Dmc1 recombinase, a member of the RecA/Rad51 recombinase superfamily, which is widely conserved from viruses to humans. Dmc1 is a meiosis-specific protein that functions with the ubiquitously expressed homolog, the Rad51 recombinase, which is essential for both mitotic and meiotic recombination. Since its discovery, it has been speculated that Dmc1 is important for unique aspects of meiotic recombination. Understanding the distinctive properties of Dmc1, namely, the features that distinguish it from Rad51, will further clarify the mechanisms of meiotic recombination. Recent structural, biochemical, and genetic findings are now revealing the molecular mechanisms of Dmc1-mediated homologous recombination and its regulation by various recombination mediators. [source] Effect of monovalent cations and G-quadruplex structures on the outcome of intramolecular homologous recombinationFEBS JOURNAL, Issue 11 2009Paula Barros Homologous recombination is a very important cellular process, as it provides a major pathway for the repair of DNA double-strand breaks. This complex process is affected by many factors within cells. Here, we have studied the effect of monovalent cations (K+, Na+, and NH4+) on the outcome of recombination events, as their presence affects the biochemical activities of the proteins involved in recombination as well as the structure of DNA. For this purpose, we used an in vitro recombination system that includes a protein nuclear extract, as a source of recombination machinery, and two plasmids as substrates for intramolecular homologous recombination, each with two copies of different alleles of the human minisatellite MsH43. We found that the presence of monovalent cations induced a decrease in the recombination frequency, accompanied by an increase in the fidelity of the recombination. Moreover, there is an emerging consensus that secondary structures of DNA have the potential to induce genomic instability. Therefore, we analyzed the effect of the sequences capable of forming G-quadruplex on the production of recombinant molecules, taking advantage of the capacity of some MsH43 alleles to generate these kinds of structure in the presence of K+. We observed that the MsH43 recombinants containing duplications, generated in the presence of K+, did not include the repeats located towards the 5,-side of the G-quadruplex motif, suggesting that this structure may be involved in the recombination events leading to duplications. Our results provide new insights into the molecular mechanisms underlying the recombination of repetitive sequences. [source] The RadA protein from a hyperthermophilic archaeon Pyrobaculum islandicum is a DNA-dependent ATPase that exhibits two disparate catalytic modes, with a transition temperature at 75 °CFEBS JOURNAL, Issue 4 2000Maria Spies The radA gene is an archaeal homolog of bacterial recA and eukaryotic RAD51 genes, which are critical components in homologous recombination and recombinational DNA repair. We cloned the radA gene from a hyperthermophilic archaeon, Pyrobaculum islandicum, overproduced the radA gene product in Escherichia coli and purified it to homogeneity. The purified P. islandicum RadA protein maintained its secondary structure and activities in vitro at high temperatures, up to 87 °C. It also showed high stability of 18.3 kcal·mol,1 (76.5 kJ·mol,1) at 25 °C and neutral pH. P. islandicum RadA exhibited activities typical of the family of RecA-like proteins, such as the ability to bind ssDNA, to hydrolyze ATP in a DNA-dependent manner and to catalyze DNA strand exchange. At 75 °C, all DNAs tested stimulated ATPase activity of the RadA. The protein exhibited a break in the Arrhenius plot of ATP hydrolysis at 75 °C. The cooperativity of ATP hydrolysis and ssDNA-binding ability of the protein above 75 °C were higher than at lower temperatures, and the activation energy of ATP hydrolysis was lower above this break point temperature. These results suggest that the ssDNA-dependent ATPase activity of P. islandicum RadA displays a temperature-dependent capacity to exist in two different catalytic modes, with 75 °C being the critical threshold temperature. [source] Helicobacter pylori mutagenesis by mariner in vitro transpositionFEMS IMMUNOLOGY & MEDICAL MICROBIOLOGY, Issue 2 2001Betty P Guo Abstract We have developed a method for generating transposon insertion mutants using mariner in vitro mutagenesis. The gene of interest was PCR-amplified and cloned. A kanamycin-marked mariner transposon was randomly inserted into the purified plasmid in an in vitro transposition reaction. After repair and propagation in Escherichia coli, purified mutagenized plasmid was introduced into Helicobacter pylori by natural transformation. Transformants were selected by plating on kanamycin. Mutants were predominantly the result of double homologous recombination, and multiple mutants (with insertions in distinct positions) were often obtained. The site of insertion was determined by PCR or sequencing. We have made mutations in known or potential virulence genes, including ureA, hopZ, and vacA, using kanamycin- and kanamycin/lacZ -marked transposons. Colonies carrying a kanamycin/lacZ transposon appeared blue on medium containing the chromogenic agent X-gal, allowing discrimination of mutant and wild-type H. pylori in mixed competition experiments. [source] Analysis of a Leptospira interrogans locus containing DNA replication genes and a new IS, IS1502FEMS MICROBIOLOGY LETTERS, Issue 2 2002R.L. Zuerner Abstract A region of the Leptospira interrogans serovar pomona genome encoding DNA replication genes was characterized. This region, designated the ppa-ntrC locus, includes 19 open reading frames and a new insertion sequence, IS1502. Although this locus resembles replication origins from many eubacteria, it lacks several genes common to homologous loci. Some replication-related genes were previously located near rrf, and may have been moved to that location by homologous recombination between short sequence elements common to both loci. Further analysis showed that the ppa-ntrC region has undergone substantial change during spirochete evolution. Transcription analysis using RT-PCR revealed uniquely organized polycistronic mRNAs in the ppa-ntrC locus. The dnaN and recF intergenic region of serovar pomona was different from the homologous sites of 41 L. interrogans serovars by the presence of IS1502. The distribution of IS1502 throughout pathogenic Leptospira species varies. This result suggests that IS1502 may have been recently introduced into Leptospira. [source] Penicillin-binding proteins and ,-lactam resistanceFEMS MICROBIOLOGY REVIEWS, Issue 2 2008André Zapun Abstract A number of ways and means have evolved to provide resistance to eubacteria challenged by ,-lactams. This review is focused on pathogens that resist by expressing low-affinity targets for these antibiotics, the penicillin-binding proteins (PBPs). Even within this narrow focus, a great variety of strategies have been uncovered such as the acquisition of an additional low-affinity PBP, the overexpression of an endogenous low-affinity PBP, the alteration of endogenous PBPs by point mutations or homologous recombination or a combination of the above. [source] A tool kit for molecular genetics of Kluyveromyces lactis comprising a congenic strain series and a set of versatile vectorsFEMS YEAST RESEARCH, Issue 3 2010Jürgen J. Heinisch Abstract A set of different marker deletions starting with a ura3 derivative of the Kluyveromyces lactis type strain CBS2359 was constructed. After a first cross to obtain a strain with the opposite mating type that also carried a leu2 allele, continuous back-crosses were used to obtain a congenic strain series with different marker combinations, including deletions in KlHIS3, KlADE2 and KlLAC4. Enzymes involved in carbohydrate metabolism were shown to behave very similarly to the original type strain and other K. lactis strains investigated previously. Moreover, a vector series of Saccharomyces cerevisiae genes flanked by loxP sites was constructed to be used as heterologous deletion cassettes in K. lactis, together with two plasmids for expression of Cre-recombinase for marker regeneration. To increase the frequency of homologous recombination, the Klku80 deletion was also introduced into the congenic strain series. A PCR-based method for determination of mating type is provided. [source] Development of host and vector for high-efficiency transformation and gene disruption in Debaryomyces hanseniiFEMS YEAST RESEARCH, Issue 1 2009Anupriya Minhas Abstract Debaryomyces hansenii is one of the most osmotolerant and halotolerant yeasts. The molecular mechanisms underlying its extreme osmotolerance and halotolerance have drawn considerable attention in the recent past. However, progress in this regard has been limited due to lack of availability of a transformation system and molecular tools to study the functions of the genes in D. hansenii. Here, we have described the development of an efficient transformation system for D. hansenii that is based on a histidine auxotrophic recipient strain and the DhHIS4 gene as the selectable marker. By screening the D. hansenii genomic library, we have isolated several autonomous replication sequences that can be used for constructing a replicating vector. Moreover, our study is the first to demonstrate gene disruption in D. hansenii by homologous recombination. [source] Human Mus81 and FANCB independently contribute to repair of DNA damage during replicationGENES TO CELLS, Issue 10 2007Yuji Nomura Recent studies suggest a crucial role for homologous recombination (HR) in repairing replication-associated DNA lesions. In mammals, the Mus81 endonuclease and the Fanconi anemia (FA) pathway have been implicated in HR repair; however, their functional relationship has remained unexplored. Here, we knockout the genes for Mus81 and FANCB, a component of the FA core complex, in the human Nalm-6 cell line. We show that Mus81 plays an important role in cell proliferation to suppress cell death when FANCB is missing, indicating a functional linkage between Mus81 and the FA pathway. In DNA cross-link repair, roles for Mus81 and the FA pathway appear to have an overlapping function. Intriguingly, Mus81 and FANCB act independently in surviving exposure to camptothecin (CPT). Although CPT-induced FANCD2 and Mus81 foci co-localize with Rad51, loss of Mus81, but not FANCB, results in significantly decreased levels of spontaneous and CPT-induced sister chromatid exchanges (SCEs). In addition, Mus81, unlike FANCB, has no significant role in gene targeting as well as in repairing hydroxyurea (HU)-induced stalls of replication forks. Collectively, our results provide the first evidence for differential functions of Mus81 and the FA pathway in repair of DNA damage during replication in human cells. [source] GANP suppresses DNA recombination, measured by direct-repeat ,-galactosidase gene construct, but does not suppress the type of recombination applying to immunoglobulin genes in mammalian cellsGENES TO CELLS, Issue 10 2007Mikoto Yoshida Immunoglobulin V-region somatic hypermutation and C-region class-switch recombination are initiated by activation-induced cytidine deaminase (AID) in B-cells. AID-induced DNA damage at the immunoglobulin S-region is known to be repaired by non-homologous end-joining, but repair mechanisms at the V-region remain to be elucidated. In Saccharomyces cerevisiae, DNA homologous recombination is regulated by the expression of Sac3, involved in actin assembly, cell cycle transition and mRNA metabolism. Here, we demonstrate that the Sac3-homologue GANP suppresses DNA recombination in a direct-repeat ,-galactosidase gene construct in mammalian cells. Homozygous ganp gene knockout is embryonic lethal in mice. Embryonic fibroblasts immortalized from hetero-deficient ganp+/, mice showed more DNA recombination than wild-type. In contrast, over-expression of GANP suppressed either spontaneous DNA recombination or that caused by the introduction of aid cDNA into NIH3T3 cells (susceptible to I-sceI restriction enzyme cleavage but not to RAG-mediated immunoglobulin gene recombination). GANP suppresses the DNA recombination not only on the extrachromosomal DNA construct but also on the integrated DNA. The Sac3-homology portion is necessary for the suppressive activity, but the truncated carboxyl terminal MCM3-binding/acetylating region adversely augmented DNA recombination, acting as a dominant negative form. Expression of full-length GANP is critical for suppression of DNA hyper-recombination in mammalian cells. [source] Functional overlap between RecA and MgsA (RarA) in the rescue of stalled replication forks in Escherichia coliGENES TO CELLS, Issue 3 2005Tatsuya Shibata Escherichia coli RecA protein plays a role in DNA homologous recombination, recombination repair, and the rescue of stalled or collapsed replication forks. The mgsA (rarA) gene encodes a highly conserved DNA-dependent ATPase, whose yeast orthologue, MGS1, plays a role in maintaining genomic stability. In this study, we show a functional relationship between mgsA and recA during DNA replication. The mgsA recA double mutant grows more slowly and has lower viability than a recA single mutant, but they are equally sensitive to UV-induced DNA damage. Mutations in mgsA and recA cause lethality in DNA polymerase I deficient cells, and suppress the temperature-dependent growth defect of dnaE486 (Pol III ,-catalytic subunit). Moreover, recAS25P, a novel recA allele identified in this work, does not complement the slow growth of ,mgsA ,recA cells or the lethality of polA12 ,recA, but is proficient in DNA repair, homologous recombination, SOS mutagenesis and SOS induction. These results suggest that RecA and MgsA are functionally redundant in rescuing stalled replication forks, and that the DNA repair and homologous recombination functions of RecA are separated from its function to maintain progression of replication fork. [source] Uncoupling of the ATPase activity from the branch migration activity of RuvAB protein complexes containing both wild-type and ATPase-defective RuvB proteinsGENES TO CELLS, Issue 9 2003Takashi Hishida Background:,Escherichia coli RuvAB promotes branch migration of Holliday junctions during recombination repair and homologous recombination. RuvB forms a hexameric ring through which duplex DNA passes and is translocated in an ATP-dependent manner. ATPase-deficient RuvB mutant K68A has a mutation in the Walker A motif and exerts a dominant-negative effect on in vivo repair of UV-induced DNA damage. In this study, we examined RuvAB-dependent branch migration in the presence of a mutant RuvB, K68A. Results:, Mixing K68A with wild-type RuvB resulted in the formation of heterohexamers that showed unique properties of DNA binding, ATPase, and branch migration activities different from those of either wild-type or mutant homohexamers. RuvB heterohexamers inhibited branch migration and caused Holliday junctions to accumulate during RecA-mediated strand exchange. In the presence of RuvA, RuvB heterohexamers had Holliday junction-dependent ATPase activity, but did not promote branch migration. Conclusions:, These results suggest that functional cooperation among the subunits in the hexamers is required for branch migration, but inclusion of inactive subunits is tolerated for ATP hydrolysis. Therefore, we propose that an essential ATP hydrolysis-dependent functional cooperation is induced in RuvB hexamer subunits during RuvAB-mediated branch migration. [source] Replication fork block protein, Fob1, acts as an rDNA region specific recombinator in S. cerevisiaeGENES TO CELLS, Issue 2 2002Katsuki Johzuka Background: The analysis of homologous recombination in the tandemly repeating rDNA array of Saccharomyces cerevisiae should provide useful information about the stability of not only the rDNA repeat but also the abundant repeated sequences on higher eukaryotic genomes. However, the data obtained so far are not yet conclusive, due to the absence of a reliable assay for detecting products of recombination in the rDNA array. Results: We developed an assay method to detect the products of unequal sister-chromatid recombination (marker-duplication products) in yeast rDNA. This assay, together with the circular rDNA detection assay, was used for the analysis. Marker-duplication occurred throughout the rDNA cluster, preferentially between nearby repeat units. The FOB1 and RAD52 genes were required for both types of recombinant formation. FOB1 showed a gene dosage effect on not only the amounts of both recombinants, but also on the copy number of the repeat. However, unlike the RAD52 gene, the FOB1 gene was not involved in homologous recombination in a non-rDNA locus. In addition, the marker-duplication products were drastically decreased in the mre11 mutant. Conclusion: Our data demonstrate that FOB1 - and RAD52 -dependent homologous recombination cause the gain and loss of a few copies of the rDNA unit, and this must be a basic mechanism responsible for amplification and reduction of the rDNA copy number. In addition, FOB1 may also play a role in the copy number regulation of rDNA tandem repeats. [source] Novel mechanisms of gene disruption at the medulloblastoma isodicentric 17p11 breakpointGENES, CHROMOSOMES AND CANCER, Issue 2 2009Martin G. McCabe Isodicentric 17q is the most commonly reported chromosomal abnormality in medulloblastomas. Its frequency suggests that genes disrupted in medulloblastoma formation may play a role in tumorigenesis. We have previously identified two chromosome 17 breakpoint at a 1 Mb resolution. Our aims were to accurately map the position of these breakpoints and to identify mechanisms of gene disruption at this site. CGH with a custom tiling path genomic BAC array of chromosome 17 enriched with fosmids at the breakpoint regions was used to analyze a series of 45 medulloblastomas and three medulloblastoma-derived cell lines. In total, 17 of 45 medulloblastomas had an isodicentric 17q. Two breakpoint regions were identified and their positions were mapped. The array identified a more complex arrangement at the breakpoint than has been reported previously using lower resolution BAC arrays. The patterns observed indicated that dicentric chromosome formation occurs both via nonallelic homologous recombination between palindromically arranged low copy repeats (the previously accepted mechanism) and by recombination between nonidentical sequences. In addition, novel alternative structural alterations, a homozygous deletion and a duplication, were identified within the chromosome breakpoint region in two cases. At the resolution of the array, these structural alterations spanned the same genes as cases with dicentric 17q formation, implying that the disruption of genes at the chromosome breakpoint itself may be of greater biological significance than has previously been suspected. © 2008 Wiley-Liss, Inc. [source] DNA repair pathways involved in anaphase bridge formationGENES, CHROMOSOMES AND CANCER, Issue 6 2007Ceyda Acilan Cancer cells frequently exhibit gross chromosomal alterations such as translocations, deletions, or gene amplifications an important source of chromosomal instability in malignant cells. One of the better-documented examples is the formation of anaphase bridges,chromosomes pulled in opposite directions by the spindle apparatus. Anaphase bridges are associated with DNA double strand breaks (DSBs). While the majority of DSBs are repaired correctly, to restore the original chromosome structure, incorrect fusion events also occur leading to bridging. To identify the cellular repair pathways used to form these aberrant structures, we tested a requirement for either of the two major DSB repair pathways in mammalian cells: homologous recombination (HR) and nonhomologous end joining (NHEJ). Our observations show that neither pathway is essential, but NHEJ helps prevent bridges. When NHEJ is compromised, the cell appears to use HR to repair the break, resulting in increased anaphase bridge formation. Moreover, intrinsic NHEJ activity of different cell lines appears to have a positive trend with induction of bridges from DNA damage. © 2007 Wiley-Liss, Inc. [source] Deletion of Brca2 exon 27 causes hypersensitivity to DNA crosslinks, chromosomal instability, and reduced life span in miceGENES, CHROMOSOMES AND CANCER, Issue 4 2003Greg Donoho The Brca2 tumor-suppressor gene contributes to genomic stability, at least in part by a role in homologous recombinational repair. BRCA2 protein is presumed to function in homologous recombination through interactions with RAD51. Both exons 11 and 27 of Brca2 code for domains that interact with RAD51; exon 11 encodes eight BRC motifs, whereas exon 27 encodes a single, distinct interaction domain. Deletion of all RAD51-interacting domains causes embryonic lethality in mice. A less severe phenotype is seen with BRAC2 truncations that preserve some, but not all, of the BRC motifs. These mice can survive beyond weaning, but are runted and infertile, and die very young from cancer. Cells from such mice show hypersensitivity to some genotoxic agents and chromosomal instability. Here, we have analyzed mice and cells with a deletion of only the RAD51-interacting region encoded by exon 27. Mice homozygous for this mutation (called brca2lex1) have a shorter life span than that of control littermates, possibly because of early onsets of cancer and sepsis. No other phenotype was observed in these animals; therefore, the brca2lex1 mutation is less severe than truncations that delete some BRC motifs. However, at the cellular level, the brca2lex1 mutation causes reduced viability, hypersensitivity to the DNA interstrand crosslinking agent mitomycin C, and gross chromosomal instability, much like more severe truncations. Thus, the extreme carboxy-terminal region encoded by exon 27 is important for BRCA2 function, probably because it is required for a fully functional interaction between BRCA2 and RAD51. © 2003 Wiley-Liss, Inc. [source] |